
LEARNING TO SEE:
CONVOLUTIONAL NEURAL NETWORKS FOR THE ANALYSIS

OF SOCIAL SCIENCE DATA

Michelle Torres Francisco Cantú
Rice University University of Houston

smtorres@rice.edu fcantu10@uh.edu

Abstract

We provide an introduction of the functioning, implementation, and challenges of Convo-
lutional Neural Networks (CNNs) to classify visual information in social sciences. This tool
can help scholars to make more efficient the tedious task of classifying images and extracting
information from them. We illustrate the implementation and impact of this methodology by
coding handwritten information from vote tallies. Our paper not only demonstrates the con-
tributions of CNNs to both scholars and policy practitioners, but also presents the practical
challenges and limitations of the method, providing advice on how to deal with these issues.

mailto:smtorres@rice.edu
mailto:fcantu10@Central.UH.EDU

1 Introduction

Computers have increasingly taken over tedious and repetitive tasks from human researchers.

From counting words in a file to performing long and complex calculations, machines are able to

follow a set of instructions in a repetitive manner without fatigue or cognitive bias. Their capacity

to perform quickly and reliably allows social scientists to analyze information from a large amount

of data, such as roll-call votes (McCarty, Poole and Rosenthal, 2006), congressional floor speeches

(Dietrich, Enos and Sen, 2019; Dietrich, Hayes and O’Brien, 2019), and social media posts (Barberá,

2015).

And yet, computers’ ability to follow a set of instructions used to be their chief limitation

when dealing with visual information. In principle, for a computer to search for images where a

specific political leader appears, we could create a checklist describing the physical characteristics

of the individual (e.g., the form of her nose, the distance of her nose to her eyes, and the size of her

forehead). But the directives could turn out to be insufficient when working with pictures in which

the individual is not facing the camera, wears sunglasses, or appears in pictures with different

lightings. Of course, we could help the computer by providing more rules, but the instruction list

would be as vast as the number of ways in which an individual may appear in a picture.

Recent developments in computer science retrieve information from images using an alter-

native approach. Inspired by the way in which humans identify visual patterns, computers are

exposed to multiple examples that allow them to extract and associate visual features with labels

by transforming images into vectors of pixel values. These vectors capture colors, edges, textures,

and other important features of the image, enabling computers to glean general patterns without

following a specific set of rules. This approach has made it possible to classify visual content,

recognize specific objects, or gather recognized objects into clusters.

To describe this technique, this paper introduces the use of Convolutional Neural Networks

(CNNs) as a reliable, cost-effective tool to deal with visual information. In particular, we present

this method as an alternative way for analyzing, coding, and classifying large-scale image col-

lections. We illustrate the advantages of this methodology by applying a CNN model to code

handwritten information from vote tallies. This example allows us to explain the structure and

functioning of CNNs in an intuitive and reliable way. Our main goal is to provide general guide-

2

lines for researchers who might want to use CNNs for their own projects.1

At the same time, we also want to stress the limitations of this method. Valid concerns re-

garding CNNs stem from their opacity when linking the inputs and the model outputs (Nguyen,

Yosinski and Clune, 2015; Sabour, Frosst and Hinton, 2017; Zeiler and Fergus, 2014), and their

reliance on large and high quality training data. These warnings should deter scholars from ap-

plying this method to identify latent dimensions or ambiguous features in the data. We emphasize

the importance of establishing transparent goals when using the model, avoiding post-hoc inter-

pretations of the outcomes, and restricting the use of CNNs to tasks that could be performed, in

principle, by a human (Lipton, 2016).

The manuscript is organized as follows. First, we introduce what CNNs are and the stages

that these involve. Second, we list the process of building a CNN as well as a few technical and

practical recommendations when applying these tools. Third, we also discuss the limitations of

CNNs for certain measurement and classification tasks. Fourth, we illustrate the practicability

of this tool using an electoral example involving the recognition of handwritten digits. We con-

clude by suggesting potential ways to expand the use of visual analysis in social sciences, as well

as other avenues of research designed to improve and complement the use of CNNs for image

classification.

Finally, we acknowledge that the method includes plenty of jargon. While we try to explain

many of these concepts in terms most familiar to political scientists, a glossary at the end of the

manuscript provides technical details about each of these terms which we identify with italics in

the main text.

2 A Primer on Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a model that takes an input (in the context of this

article, images) and that assigns importance or “weights” to various features of such inputs in

order to differentiate one from the other. The CNN has a structure of elements and specifications

called the architecture, which has the concept of “convolution” at its core.

Figure 1 illustrates the basic architecture of a CNN, which is represented as a stack of different
1The few applications of CNNs in political science include Anastasopoulos et al. (2016); Boxell (2020); Cantú (2019);

Lucas (2018b); Steinert-Threlkeld, Joo and Chan (2019), and Won, Steinert-Threlkeld and Joo (2017).

3

Figure 1: Example of a Convolutional Neural Network Structure

0
0

0
0

0

0
0.

6
1

0
0

0
0

1.
5

0
0

0
0

2.
2

0
0

0
0

0.
3

0
0

0
0

0
0

0

0
0.

54
0.

76
0

0

0
0

0.
91

0
0

0
0

0.
98

0
0

0
0

0
0

0

0.
54

0.
76

0.
76

0

0.
54

0.
91

0.
91

0

0
0.

98
0.

98
0

0
0.

98
0.

98
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.6
1

0
0

0
0

0
0

0
0

0
0

.6
1

0
0

0
0

0
0

0
0

0
0

.3
1

.5
0

0
0

0
0

0
0

0
0

0
1

.5
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

.8
.8

1
0

0
0

0
0

0
0

0
0

0
.8

1
.2

0
0

0
0

0
0

0
0

0
.3

1
.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.6
1

0
0

0
0

0
0

00 0 0 0 0 0 0 0 00 0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
00 0 0 0 0 0 0 0 00 000 0

00 0 0 0 0 0 0 0 00 000 0

1
0

0
0

1
0

0
0

1

1
x

1
=

1
0

x
1

=
0

0
x

0
=

0

0
x

.8
 =

 0
1

x
1

=
1

0
x

0
=

0

0
x

.8
 =

 0
0

x
1

=
0

1
x

.2
 =

 .2

PR
E-

PR
O

C
ES

SI
N

G
FE

AT
U

R
E

R
EP

R
ES

EN
TA

TI
O

N

C
on

vo
lu

tio
n

La
ye

r
(C
O
N
V

)
Ac

tiv
at

io
n

La
ye

r
(A
C
T)

Po

ol
in

g
La

ye
r

(P
O
O
L)

Fu
lly

 C
on

ne
ct

ed

 L
ay

er

(F
C

)

10 2 3 4 5 6 7 8 9

C
LA

SS
IF

IC
AT

IO
N

4

layers. Convolution layers (CONV) look for specific patterns in the feature space of the image. Ac-

tivation (ACT) and pooling (POOL) layers perform numeric operations to introduce non-linearities

and reduce the dimensionality of the space respectively. Finally, the fully-connected (FC) layer

learns those parameters that help the model to classify the image in an accurate way. Altogether,

this structure reduces the dimensionality of images and learns their content by looking for infor-

mative features and patterns across examples. We detail all of these concepts below.

The functionality of CNNs can be divided into three stages. The first one pre-processes the

images to make sure they all share the same pixel area and range. The second stage deconstructs

the images into multiple components, each representing a specific visual feature, and reduces the

dimensionality of the data. The last stage gleans relevant information to classify the images into

the available output labels. We explain below the logic behind each of these stages, the hyper-

parameters that each of them involves, and the alternatives available to the researcher. For ease

of explanation, the illustrating example is based on images of handwritten numbers with a sin-

gle color channel (i.e. the images are in grayscale). However, all the steps and details are easily

extendable to colored images and their respective three color channels.

2.1 Image Pre-Processing

We begin by transforming the images into a readable format for the computer. This process in-

volves representing each image as a numerical array, where each entry depicts a specific pixel

value. The left-hand side of Figure 1, for example, illustrates how a 13 (height)× 13 (width) pixels

picture showing a handwritten “1” can be transformed into a matrix of 13 × 13 = 169 units, each

of them specifying the light intensity of a specific pixel.2 In the case of a color image, the transfor-

mation would produce three matrices of the same size, one for each primary color channel (red,

green, and blue) in which the values in each cell represent the intensity of the corresponding color.

Optimizing the images for being used in a CNN involves making sure all files share the same

shape, size, and contrast range. The first step is to convert all images into squares of the same size.

This is an important requirement because squared images optimize the linear algebra calculations

2The concept of “amount of light” might seem counterintuitive when expressed in mathematical form. In practice,
a value of “0” corresponds to a black pixel, while “255” represents a white pixel. To avoid confusion and only for
illustrative purposes, we take higher numbers in the matrixes presented as higher concentrations of “ink”. Therefore,
higher numbers correspond to darker pixels.

5

involved in the convolution (Rosebrock, 2017). The three most common methods for squaring

the image include squashing the image’s largest side, adding black bordering to its shortest one,

or center-cropping it. The latter option is the most common practice because it also reduces the

number of pixels that the model will process, leading to faster learning.

We also need to scale all images to the same pixel range. This step prevents the model from

being biased towards images with large-value pixels. A common scaling approach is normaliza-

tion, which constrains the pixels to the [0, 1] range by dividing the raw values by 255, the largest

possible pixel value. An alternative scaling approach is centering, which divides the difference

between each pixel and the mean pixel value in the image by the standard deviation of the pixel

values in the data. Unlike normalization, centering transforms the pixel values to have a mean of

zero and a variance of one.

The resulting input matrix is the core unit of analysis. The goal of the CNN is to extract the

most relevant information from this matrix while gradually reducing its dimensionality. Given

the way in which convolution works (see Subsection 2.2), CNNs downplay the features along the

edges of the image. To prevent this problem, it is suggested to apply zero-padding, or appending a

perimeter of zeros to the input matrix3.

Finally, we dispatch all of the images in our database into four subsets: 1) one that will fit the

model (training set), 2) another one that evaluates its performance and allows parameter tuning

(validation set), 3) a third one to test the performance of the “best” model from the previous step

(testing set), and 4) a final one that will be labeled after training and tuning the model (target set).

The training data include those examples that the model uses to learn the patterns correspond-

ing to each outcome category. The validation and test datasets include examples that help us to

find the parameters that optimize classification and check the generalizability of the model’s pre-

dictions. The model is only allowed to observe and predict the labels of the validation and test

data, but it is not allowed to learn from them. Finally, the target set includes data from unlabeled

examples and is never used during the training stage. The whole point of a supervised learning

method is to train and test a model that helps us label the examples in the target set.

3See Figure A.1(b) in the Appendix for an illustration of how zero padding works.

6

2.2 Feature representation

The second stage of the CNN begins when the input matrix passes throughout the first CONV. Each

convolutional layer contains a set of smaller matrices, called filters, each of them representing a

particular visual feature. The filters in the first layer depict basic features, such as straight or

diagonal lines (see Figure A.2 in the Appendix for an illustration). Subsequent layers build upon

those features and transition to more complex features, from lines to contours, to shapes, and to

objects. The more layers a CNN has, the more complex features of the image it will recognize

(Buduma and Locascio, 2017; Qin et al., 2018).

The goal of each filter is to extract different information from the input matrix. Every time a

filter slides across the width and height of the input matrix, it computes the dot product between

itself and the corresponding image sub-region, a process similar to a cross-correlation.4 The re-

sulting dot products of a filter form a new matrix called receptive field, which represents how well

the filter “matches” a region of the image.

Convolution requires three hyperparameters to be defined by the researcher. We briefly de-

scribe each of them and provide general recommendations to choose their values in Section 3.1.

First, the filter size is the product of the filter’s width and height. For example, the filter size in the

example described in Figure 1 is 3 × 3 = 9. Small filters capture fine-grained details, but they are

likely to mix up the relevant information from an image with its noise. On the other hand, large

filters look for details of a larger size at the cost of a lower specificity. Second, the filter stride is an

integer number defining how many pixels the filter will slide through the image. The smaller the

stride, the more information from the image that is preserved during the convolution.5 Finally,

the layer depth defines the number of filters in CONV. Note that all of the filters set by this parameter

have the same size.

We illustrate how a convolution works in Figure 2. The convolution process involves comput-

ing the dot products of the filter and the values of every equivalent pixel space in the image. In

this example, the dot product between the entries of the filter and the input of the highlighted im-

4Since filters slide across the width and height of the image, this operation is called 2D convolution. In this case,
each filter represents a specific visual pattern and the feature map portrays whether that pattern appears in the image.
CNNs can be also be applied to text of waveform data using 1D convolution. This method looks for patterns in the
values of the input across word or time-steps (Kiranyaz et al., 2019).

5For a comparison of model performances using different strides and filter size, see Simonyan and Zisserman (2014).

7

age area is 2.2. Using a stride of 3, the filter slides three steps to the right and again computes the

dot product of its entries. The result of this operation is called the feature map, and the convolution

process will create as many feature maps as filters specified in CONV.6

Figure 2: Illustration of the Convolution Stage

1 0 0
0 1 0
0 0 1

1 x 1 = 1 0 x 1 = 0 0 x 0 = 0

0 x .8 = 0 1 x 1 = 1 0 x 0 = 0

0 x .8 = 0 0 x 1 = 0 1 x .2 = .2

0 0 0 0 0

0 0.6 1 0 0

0 0 1.5 0 0

0 0 2.2 0 0

0 0 0.3 0 0

Feature mapInput matrix Filter

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 .6 1 0 0 0 0 0 0
0 0 0 0 .6 1 0 0 0 0 0 0
0 0 0 0 .3 1 .5 0 0 0 0 0
0 0 0 0 0 1 .5 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 .8 .8 1 0 0 0 0 0
0 0 0 0 0 .8 1 .2 0 0 0 0
0 0 0 0 0 .3 1 .2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 .6 1 0 0 0 0 0 0

0

0
0
0
0
0
0
0
0
0

0
0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0

0
0
0
0
0
0
0
0
0

0
0

0
0

0
0

0
0
0
0
0
0
0
0
0

0
0

0
0

0

Since the resulting feature map is a linear transformation of the input matrix, adding more

CONV layers at this point would be redundant; the result could be obtained with a single linear

product. Such feature maps are unlikely to produce smooth gradients, a necessary input for the

learning phase described in Section 2.3. To address this problem, it is necessary to include an

activation or ACT layer. This layer applies a non-linear transformation to the feature maps before

being sent to the next convolution layer. The non-linearity property allows the network to stack

multiple layers and extract more information from the image.

The specific transformation that the ACT layer performs on the input depends on the activation

function of the neuron. We briefly describe three of these functions below (Figure A.3 in the Ap-

pendix illustrates their graphic representations). The first one, Sigmoid, is simply the inverse of

the logistic function, which bounds the activation values to the [0, 1] range. Tahn is a linear trans-

formation of Sigmoid that zero-centers the outputs and bounds them to the [−1, 1] interval. For

6The size of each feature map is defined by:

feature map size =
(input width × input length)− filter size + (2× zero padding)

stride + 1
(1)

8

illustration purposes, we use Tahn for our example in Figure 1. One limitation of the aforemen-

tioned functions is that their output becomes flat near their boundaries, limiting the network to

learn from inputs with either very low or very high activation values. Addressing these issues, the

Rectified Linear Unit (ReLU) is a non-saturated function that keeps the original input value when it

is positive and transforms all negative values to 0. ReLU usually increases the learning speed of

the network and is now the standard activation function in practice (Nair and Hinton, 2010).

Given the potentially large size of an image, one of the goals of this stage is to reduce the

dimensionality of it while keeping its most relevant information. To reduce the dimensions of the

image, it is recommended to include a POOL layer after every CONV → ACT sequence (Rosebrock,

2017). The way in which POOL summarizes the information depends on whether it keeps the

largest value (max pooling), the smallest value (min pooling), or the average value (mean pooling) of

a specific pixel area. In the example of Figure 1, we apply max-pooling to keep the largest value

from every 2 × 2 pixel area of the matrix. The resulting matrix generalizes the properties of the

image, forcing the neural network to pay more attention to whether a feature fits in the image

regardless of the location of such a feature.

The CONV → ACT → POOL sequence is repeated for each of the filters in the first layer. The

resulting feature maps then become the input for the second CONV. This new layer reproduces all

of the steps described above, and its filters slide through the feature maps to now look for more

complex features, such as a combination of lines or edges. The process is repeated as many times

as CONV are in the network.

2.3 Learning

The last stage of the CNN uses the elements extracted during the last CONV→ ACT→ POOL sequence

to predict the label of the image. This stage involves a set of fully connected (FC) layers followed

by a final ACT, also called output layer, that produces the output value for the prediction. Each

neuron in a FC layer receives an input, transforms it, and sends a signal to the neurons to either an

additional FC or an ACT layer. The strength of the signal depends on the weight between the emit-

ting and receiving neurons. Positive weights amplify the signals and highlight their contribution

to the output. Negative weights, by contrast, weaken the signal to which they are attached.

9

When the information reaches the output layer, its corresponding nodes deliver the probability

that the original input belongs to each label through a given activation function. If the classifica-

tion task only involves two labels, the output layer estimates the probabilities using an inverse

logit. Otherwise, the probabilities are estimated through a softmax layer layer, the equivalent of

a multinomial logistic function. In the example described above, since we want to identify the

image from Figure ??(a) as a digit value, the last layer of our network has 10 neurons or outputs,

one for every digit from 0 to 9. Each neuron will provide a probability that the image belongs to

each digit, and the model will attach the label with the highest estimated probability.

Until this point, the neural network has performed only a forward propagation—i.e., passing the

input data sequentially through each of the layers to generate a prediction. However, for the CNN

to learn what features of the image are more likely to belong to each label, it requires a process

called backpropagation (Rumelhart, Hinton and Williams, 1988). For this operation, the model goes

back from the output layer to the input layer with the goal of discovering high-level features of

the images. With every step away from the output layer, the model calibrates the weights between

neurons to gradually minimize the errors in predictions (Lucas, 2018a; Schrodt, 2004). Therefore,

the learning process consists of reviewing a set of labeled examples multiple times to find the

optimal combination of feature maps and weights that minimize the disparities between true and

predicted labels.

We use the loss function to quantify such disparities and as our target for optimization. The

smaller the loss, the better the predictions that the classifier is reaching. In more familiar terms, the

loss function in a OLS regression is the mean square error (MSE), i.e. the mean of the differences

between the observed values yi and the predicted values represented by the regression line, ŷi. In

the CNN context (and nearly all deep learning applications), the default loss function for binary

classification is the binary cross-entropy loss, and for more than two categories the categorical

cross-entropy loss.

Analytically, backpropagation searches for the local points in a high-dimensional space where

the error derivative of the total loss function is zero. To find those saddle points, the CNN modifies

the weights between layers and checks for its resulting changes on the error. This estimation is

called gradient descent and consists of repeatedly calculating the slope of each weight with respect

to the loss function and modifying such weight to minimize the slope until finally reaching the

10

bottom of the function.7

Similar to the previous subsection, we describe the hyperparameters that have to be specified

in this stage, and provide recommendations for setting these values in Section 3. First, given the

iterative nature of the gradient descent, it is necessary to specify the epochs, or the number of times

that all training examples will pass through the network. The model is more likely to fit its weights

as it has more opportunities to review the training examples. It is expected that the prediction

errors in the training and validation data will decrease with the number of epochs. However,

when the loss in the validity dataset stops decreasing, we should stop the training process (see

Subsection 3.3). In this way we prevent the model from starting to learn features of the images

that are not generalizable outside the training data.

Second, the researcher needs to define the batch size, or the number of training images that

need to pass through the network before it updates its weights. If the batch size is equal to the

total number of training images, the model will update its weights only after accumulating the

prediction errors across all the training images, a task that can demand a lot of computational

memory. It also produces a static error surface, where the gradient descent is likely to get stuck

in a local minimum. By contrast, the batch size can be equal to one, where the model updates

its weights for each training example. Though updating the model with every example decreases

the risk of getting stuck on a flat region, it produces a very noisy signal. A middle-way approach

splits the training data into mini-batches, allowing the model to update its parameters several times

during an epoch.8

Finally, we can specify the learning rate, or the size and timing of the steps we take to reach the

function’s local minimum. Finding the optimal learning rate in advance presents a conundrum.

A large learning rate will jump around the function, overshooting its minimum. By contrast, a

very small learning rate is more likely to find a local minimum, but it will take a long time to

converge. Ideally, we would use a learning rate that helps the model to start exploring the entire

hyper-parameter space and to approach the global minimum by gradually making smaller jumps

(Buduma and Locascio, 2017). Yet it is hard to know ex-ante when and by how much to decrease

the learning rate along the iterations. Moreover, having a unique learning rate to estimate all the

7A more technical description of the backpropagation process is included in the Glossary.
8The number of mini-batches in our database multiplied by the number of epochs tells us the number of iterations,

or how many times the gradient was updated during the training phase.

11

parameters could hinder the model to explore the entire space in an efficient way. Fortunately, the

researcher can choose from different gradient descent optimization algorithms that lead to faster

convergence and that do not require to manually tune up the learning rate.9 For example, the

Adaptive Gradient Algorithm (Adagrad) adjusts the learning rate to each parameter, computing

smaller updates for frequently occurring features and larger updates for the less frequent ones.

The Adaptive Moment Estimation (Adam) follows the same logic as Adagrad, but it solves the

radically diminishing learning rate of the latter (Ruder, 2016). That advantage makes it the current

default choice in machine learning.

3 Practical recommendations

In this section we present and discuss some guidelines to reach and improve the decisions re-

searchers will have to make when implementing their own CNN, as well as a set of common

practices and “rules of thumb” for different cases.

3.1 Building a CNN architecture

The simplest structure in a CNN includes a single CONV with a unique filter followed by an ACT and

a POOL layers, and a single FC with a subsequent ACT that makes the prediction. We can represent

more complicated architectures with the following pattern:

Input [CONV ACT POOL?]×M [FC ACT]×K ,

where M and K, are the number of times that a given sequence is repeated. For example, the

simplest structure mentioned above will have M = K = 1.

We can change the complexity of the structure in two ways. First, we can make a deeper net-

work by increasing either M or K. The former option implies adding more CONV to the network.

The deeper a network is, the more complex the features from the image that the convolutional

layers will find. We expect a larger M in models using extensive training data and a complex

classification goal. Alternatively, we can deepen the network by increasing K, or the number of

9For a very helpful comparison of the most common optimizers, see Karpathy, Andrej. 2019. “CS231n Convolutional
Neural Networks for Visual Recognition.” https://cs231n.github.io/neural-networks-3/ (March 30, 2019).

12

https://cs231n.github.io/neural-networks-3/

FC layers towards the end of the network, allowing for a more complex classifier.

Another element that can vary from architecture to architecture is the inclusion of a POOL layer

(therefore, the “?” sign next to POOL in the pattern above). While some models rely on convolu-

tional layers with longer strides to reduce the dimensionality of the data, others use POOL layers

that simplify the data between each round of convolutions. Including this type of layers allows the

network to deal with simpler data, but also forces it to focus on less specific features of the images.

At the end, this step “compresses” the amount of information from which the model learns.

There is not a unique recipe for the values of these hyperparameters. As a starting point, basic

structures include 1 ≤ M ≤ 3, and K ≥ 1 (Rosebrock, 2017). But researchers should consider the

size of their data, the number of desired output labels, the similarity between output labels, and

the intra-class variance (i.e., how dissimilar are the objects belonging to the same label). We also

encourage the reader to experiment with different settings to test the model performance using

hyperparameter grid search (see Section 5).

The number and size of the filters in each CONV are other relevant hyperparameters to con-

sider. Here, we go back to the importance of fully knowing the data under analysis to inform that

decision. A higher number of filters will make the network look for more features of the image

sharing a similar level of complexity. A common procedure to set this number involves increasing

the number of filters gradually through the network. Some scholars recommend to double the

number of filters every time we add an additional CONV (Shang et al., 2016). Other architectures

present even larger increments.10

With regards to the filter size, if the pixel space is sufficiently large and the model’s goal is to

find large-scale features of the image, filters of size 11 × 11 or 9 × 9 would be fitting. However, if

the features that distinguish the images are more fine-grained, then small filters (3 × 3, or 5 × 5)

will be more appropriate. For example, Han et al. (2018) find that detecting whether a person is

smiling in a picture relies on broader and more evident identification of features like the strong

curvature of the lips that are easily captured with larger filters. In contrast, detecting whether a

person is frowning relies on finding light wrinkles in the forehead, a feature that is more efficiently

identified with a smaller kernel.

The last considerations have to do with the characteristics of POOL. In very complex networks,

10For a more detailed explanation of the architectures of common CNNs, see Table ??.

13

pooling generally uses 3× 3 receptive fields in the early stages of the model to then reduce its size

to 2×2. Simpler networks use 2×2 receptive fields and a stride of 2 all along its sequence. Finally,

while max pooling is the most common pooling layer (Boureau, Ponce and LeCun, 2010; Ranzato,

Boureau and Cun, 2008), recent findings suggest that some hybrid pooling methods, such as the

“mixed max-averaging pooling”, can also improve performance for an extra computational cost

(Lee, Gallagher and Tu, 2016).

3.2 Software

There are multiple open-source machine learning packages that researchers can use to design and

run a Convolutional Neural Network. Some of the most popular are TensorFlow (from Google),

Caffe (from UC Berkeley), CNTK (from Microsoft), PyTorch (from Facebook), and MXNet (supported

by AWS). Keras is a neural networks API written in Python that supports models like CNNs

and recurrent networks and allows a very accessible, efficient, and user-friendly interaction with

packages like TensorFlow.

The differences between the aforementioned packages are in terms of speed, energy efficiency,

and accessibility. As a quick summary, TensorFlow is faster when running large-scale models,

while Caffe is faster with small-scale ones (assuming they are both implemented on a CPU-based

platform). Further, while PyTorch is more memory efficient than its counterparts, MXNet requires

the least amount of computational energy. Thus, scholars should consider the size and complexity

of their data and classification objectives, plus the hardware/computational resources they have at

hand. Zhang, Wang and Shi (2018) offer a great compilation of insights regarding the performance

of these packages with respect to speed, memory, and energy.

Beyond these packages, there are other tools that facilitate the design of the architecture of

a CNN and also allow researchers to take advantage of pre-trained models. In particular, these

might be interesting for deep learning beginners or scholars with less advanced programming

skills. The options include but are not limited to Amazon AWS Machine Learning Training, Google

Cloud AutoML or Google Cloud Machine Learning Engine. For a review of these platforms and their

performance, see Webb Williams (2019).

14

3.3 Finding the right amount of training

As with any human-performed task, prediction accuracy for a CNN model comes only with prac-

tice. A model requires to be trained over multiple iterations, so it can learn the relevant patterns in

the training data. Not doing so leads to underfitting, which occurs when the model is too simple

to account for all the variance across images. An underfitted model makes strong assumptions

when classifying the data, leading to a high bias on its predictions. As we increase the number of

training iterations, the model can continue learning the general patters of the training examples

and adjust its filter weights accordingly.

On the other hand, training the model for too many iterations will eventually lead to overfit-

ting. This works against generalization, a principle in machine learning that refers to the perfor-

mance of the model with examples outside the training set. When overfitting occurs, the model

starts picking up noise or random fluctuations from the training images as valuable concepts for

classification. To check for overfitting, we can monitor model performance in the training and

validity sets after each epoch and stop when the loss decreases (or the model’s accuracy no longer

increases) in the validity data. Preventing overfitting while allowing the model to learn the most

relevant features of the images is a practical dilemma, and it depends not only on the number of

training iterations but also on the model architecture. We suggest below a few ways to optimize

the training.

Increase the size of the training set This is the default solution. The more images in the training

set, the more opportunities the model has to distinguish the systematic patterns across images

from random fluctuations. If getting more training data is difficult, researchers can artificially

increase the size of the training set using data augmentation (see Subsection 3.4).

Explore different network structures Overfitting can be the result of a very complex model with

too many features. We can try removing certain features of the model and compare its perfor-

mance. However, as mentioned above, we must be aware that taking away too many parameters

can lead to a very rigid model. The problem is then knowing how many and which of these pa-

rameters we should remove. One way to answer this question involves using a grid search. This

technique runs the model in a “for-loop”, compiling it with a different set of hyperparameters in

15

each iteration. The results allow the researcher to compare the performance of multiple settings

and to choose the configuration with the lowest loss.11

L1 and L2 regularization Overfitting often produces model weights with very large values. We

can mitigate this problem using regularization, a technique that forces the model to take only

small weight values. The most common regularization techniques increase the costs associated

with the weights. The Least Absolute Shrinkage and Selection Operator (Lasso Regression or L1),

for example, penalizes large values by adding the absolute value of the weights to the loss func-

tion. Such penalization encourages the model to have as many weights closer than 0 as possible,

removing some of the features for the classification. The Ridge Regression (L2), in contrast, penal-

izes large values by adding the square magnitude of the weights to the loss function. In this case,

this regularization over penalizes very large weights but it will not dismiss as many features as

L1. The technical details for both types of regularization are in the Glossary.

Dropout This is another regularization technique that, as its name suggests, randomly “drops

out” a set of neuron activations at each iteration of the training (Srivastava et al., 2014). By ignoring

some of the information that passes across layers, this approach slows down the learning for each

training iteration, forcing the model to learn more robust features that activate multiple neurons.

Dropout is typically applied in between FC layers with a dropout probability of no more than

50%. Some researchers also suggest adding this operation with small probabilities (between 10-

25%) between CONV layers (Rosebrock, 2017).

3.4 Optimizing your training set

A better learning depends not only on the number of times the model can learn from the examples,

but also on the information it extracts from them. We suggest four concepts to keep in mind when

choosing the amount and quantity of data that the model will learn from.

Active learning We recommend picking the most useful instances of each class to train the

model (Miller, Linder and Mebane, 2020; Settles, 2009). This suggestion is particularly conve-

11See Webb Williams, Casas and Wilkerson (Forthcoming) for a detailed discussion of how this technique works.

16

nient when obtaining additional training examples is a difficult, time-consuming, or expensive

task. Selecting those examples should be based on two goals: informativeness (i.e., how much

the instances help the classifier to improve its performance) and representativeness (i.e., how well

the instances represent the overall input patterns of the entire dataset). Both are rarely achieved

simultaneously, and researchers must often choose which one to prioritize at the cost of the other

(Huang, Jin and Zhou, 2014).

Class balance It is also useful to make sure that all classes in the training set are represented by a

similar number of examples (Buda, Maki and Mazurowski, 2018). Class balance prevents skewing

the model’s predictions toward the label with more training instances (Japkowicz and Stepehn,

2002). This is a recurrent issue in situations where the positive cases represent a minority of all the

cases, such as locating oil-spills (Kubat, Holte and Matwin, 1998) or identifying fraudulent bank

operations (Chan and Stolf, 1998).

Image cleaning Another risk when training a model is that it may learn visual features that are

alien to those defining the categories of interest (e.g., ink stains that are not relevant to the content

of a document). As described above, images should be pre-processed to make sure they appear as

similar as possible. In some cases, this step may require modifying and cropping irrelevant parts

of the image.

It is also possible to homogenize the data of every training batch. In this case, batch normaliza-

tion transforms the outputs of the convolutional layers to parameters with zero mean/unit vari-

ance, allowing the layer activations to be appropriately handled by any optimization method (Ioffe

and Szagedy, 2015). This technique keeps the network from focusing on outlying activations that

decelerate its learning.

Data augmentation This technique produces random variations of the original training images

by, for example, flipping, flopping, rotating, zooming out, or combining all of these alternatives

(Chatfield et al., 2014). The augmented cases will force the model to pay less attention to the

specific location and orientation of a feature in an image and instead grasp its relationship to

other image features.

17

3.5 Transfer learning

Training the model from scratch can be computationally expensive and requires a large dataset

to avoid overfitting. An alternative approach involves transfer learning, where an already trained

model can be directly applied to a new task or used as the starting point for training a new model

(Pan et al., 2010). Transfer learning is an available resource when the researcher is lucky enough

to find a model already trained on a dataset with similar content to hers, and that also performs a

similar classification task.

To adapt the trained model to the new data, we can deactivate (or “freeze”) its initial layers.

This way the model takes the weights previously learned and calibrates their values based on

the the new target categories. For example, Zhang and Pan (2019) used transfer learning to fine

tune VGGNet, a canonical CNN model trained on a set of 1.2 million images, to identify collective

action events. Because those categories do not cover human faces or crowds, crucial elements of

protests and demonstrations, the authors “froze” the first 12 layers of a VGGNet and re-trained

the last four layers with a set of images containing their target elements.

In Table A.1 in the Appendix, we provide a summary of popular architectures that can serve

as the basis for transfer learning. We include technical details such as the number of layers and

size, performance indicators, and the references to the articles that introduced them. See also

Webb Williams, Casas and Wilkerson (Forthcoming) for a detailed explanation of this method, as

well as some resources available when using this approach.

3.6 Validate and check the results

Similar to textual analysis, a key principle of machine-coded visual analysis is “validate, validate,

validate” (Grimmer and Stewart, 2013, p. 269). Validating the results will reveal potential sources

of errors and provide information about the model fit. An insightful way to improve the model is

to review the misclassified images in the validity set. As we will show in the example below, this

is a helpful practice to find potential problems in the model. Another way to check the validity

of the model’s predictions is to visualize the most relevant features driving the predictions (Won,

Steinert-Threlkeld and Joo, 2017; Zeiler and Fergus, 2014). Similar to finding the most important

coefficients in a regression, this exercise provides information about the the mechanisms behind

18

the predictions. For example, some of these tools provide “maps” that reveal what parts of the

image or specific features were most determinant in reaching a prediction. This in turn can provide

the researcher with information to help complement or tune the samples included in the training

pool.

4 A warning note: The limits of CNNs

Throughout this article, we present the functioning and components of CNNs, as well as an il-

lustration of their applicability to data collection for social science purposes. However, below we

also mention some of the most important flaws of CNNs that researchers must keep in mind when

solving complex tasks with this tool.

First, CNNs do not account for the orientation of objects in a picture. While they are robust

against small-scale deformations, their final representations are not geometrically invariant (Cire-

san et al., 2011; Gong et al., 2014). Ideally, we would like CNNs to identify an object regardless

of its size or rotation. A CNN will identify a face when it finds features associated with an eye,

a nose, and a mouth, ignoring whether the eyes are below the nose and above the mouth, for ex-

ample. This problem stems from the fact that the model focuses on routing the pixel information

throughout the layers without adding any information about the relative position of the extracted

features. Without a comprehensive and extensive training dataset (see the Section regarding Data

augmentation above), the classification of pictures becomes inaccurate and subject to error, even

in cases involving simple tasks (Sabour, Frosst and Hinton, 2017).

Another criticism of CNNs lies in their lack of uncertainty measures. Unlike traditional models

such as regression, these tools do not yield quantities like standard errors that aid with inferences

or assessments of confidence. While the last layers of the CNN provide the “probabilities” of an

image belonging to a certain class, these quantities should be used with caution. Recent evidence

shows that seemingly imperceptible alterations to an image can cause drastic changes in the out-

come probabilities (Nguyen, Yosinski and Clune, 2015). This research implies that the likelihood

for an image to be identified a certain way might depend not only on its basic features, but also

on stochastic aspects, such as its illumination or the proportion of a picture it occupies.

Finally, CNNs cannot discover latent dimensions or classify abstract concepts. As a rule of

19

thumb, if a human cannot validate a trait, a CNN will not be able to do it, either. Recall that some

inputs that give context to a visual message, such as positions, get lost during the classification

process, and that certain perturbations that would not mislead humans can have a significant im-

pact on the CNN output (Gong et al., 2014; Goodfellow, Bengio and Courville, 2016). Moreover,

other visual messages are filtered through cognitive biases, experiences, and backgrounds of the

person consuming them. A CNN relies on factual features and unambiguous labels to learn the

association between them. Thus, abstract concepts or latent traits, such as the emotions that im-

ages trigger or evoke, offer a hard case not only for the actual classification process (Casas and

Webb Williams, 2019), but also for the post-classification analysis and validation of the results.

In these cases the risk of incurring in post-hoc interpretations of the outcomes is high given the

flexibility to adapt the outputs to the researcher’s expectations.

In summary, researchers need to be aware of the limitations of CNNs, cautious about the ob-

jectives they expect CNNs to fulfill, fully knowledgeable of the data under analysis and training,

and careful about their interpretation of the outputs of the CNN.

5 Application: Coding Electoral Results from Vote Tallies

We illustrate the implementation of a CNN by extracting information from vote tallies for Mex-

ico’s 2015 federal election. We chose this case for two main reasons. First, the task of “handwritten

classification” is a text book application of CNNs in the field of computer science due to its ob-

jective nature and low dimensionality. For the specific case of coding vote returns, handwritten

numbers have one color channel and a low number of features and variations, which allows us

to represent the numbers in a straightforward way. Moreover, we expect that a number “8”, for

example, will be always coded as such regardless of the coder.

Second, this example demonstrates the benefits of visual analysis to scholars and policy prac-

titioners. We think the adequate use of CNNs may be a useful tool for scholars working with dif-

ferent types of archival data (Coüasnon, Camillerapp and Leplumey, 2007; Homola, 2018; Huff,

2018; Lladós et al., 2007; Taylor, 2008). At the same time, it proposes a transparent, cost-efficient

mechanism to record the information from hand-counted vote tallies, a prevalent document in

most national elections. The technology can help election administrators to reduce the number

20

of accidental errors during the hand-counting process, a problem that occurs in almost 40% of

the Mexican vote tallies (Challú, Seira and Simpser, Forthcoming). Moreover, this technology can

shorten the waiting time for the announcement of the results, a period of distress for candidates

and voters in elections across the world.12

Figure 3 shows an example of the handwritten numbers in one of the tallies in our database.

To first extract the handwritten digits, we designed a function that uses the coordinates of three

focal points in the tally as anchors to crop first the table with the vote counts and then each of

the individual digits in it.13 Once we extracted the digits from the tallies, we built our training,

validation, and test sets of size 24,271, 2,000 and 2,616, respectively. The target sample has 23,058

digits from one specific district in the country.

Figure 3: Example of the image of a tally

To illustrate the process of finding the “best model” for our data, we proceed in three steps.

First, we use an already trained model for reading handwritten numbers of the Modified National

12See, for example, “Four Days Later, Florida Declares For Obama.” November 10, 2012. (http:
//www.npr.org/sections/thetwo-way/2012/11/10/164859656/florida-finishes-counting-obama-wins);
BBC, “Haiti starts counting votes in long-delayed election.” November 21, 2016. (http://www.bbc.com/news/
world-latin-america-38042585); Clarín, “Elecciones PASO 2017: Cristina Kirchner denunciará la “trampa elec-
toral” del Gobierno y apuntará a todos los votos peronistas.” August 14, 2017. (https://www.clarin.com/politica/
elecciones-paso-2017-cristina-kirchner-denunciara-trampa-electoral-gobierno-apuntara-votos-peronistas_

0_SJghMNJ_Z.html).
13We provide more information about this process in the Appendix.

21

http://www.npr.org/sections/thetwo-way/2012/11/10/164859656/florida-finishes-counting-obama-wins
http://www.npr.org/sections/thetwo-way/2012/11/10/164859656/florida-finishes-counting-obama-wins
http://www.bbc.com/news/world-latin-america-38042585
http://www.bbc.com/news/world-latin-america-38042585
https://www.clarin.com/politica/elecciones-paso-2017-cristina-kirchner-denunciara-trampa-electoral-gobierno-apuntara-votos-peronistas_0_SJghMNJ_Z.html
https://www.clarin.com/politica/elecciones-paso-2017-cristina-kirchner-denunciara-trampa-electoral-gobierno-apuntara-votos-peronistas_0_SJghMNJ_Z.html
https://www.clarin.com/politica/elecciones-paso-2017-cristina-kirchner-denunciara-trampa-electoral-gobierno-apuntara-votos-peronistas_0_SJghMNJ_Z.html

Institute of Standards and Technology’s (MNIST) database (LeCun et al., 1989) and test its ac-

curacy on our database. Second, we fine tuned the model using a hyperparameter grid search.

Finally, we used transfer learning to allow the model to learn the particular characteristics of our

data. The description of each of the steps below aims to be a template for researchers interested in

designing and tuning their own models.

We start using a base model with two convolutional layers, each followed by a max-pooling

layer, and three fully-connected layers that precede the softmax activation layer. Figure A.4 in

the Appendix presents the detailed architecture.14 This stage involves training the model using

exclusively examples from the the MNIST dataset, out of which 60,000 handwritten digits are in

the training set, and 10,000 different examples will constitute the validity set.

While the base model achieves high levels of accuracy on the MNIST digits (0.9914), we want

to know how useful this model is to predict the digits from the tallies. The results are not very

encouraging at first, for the accuracy rate of this model in our validation dataset is only 0.3245.

We interpret the significant drop in the accuracy rate as a result of the specific nature of our data.

Most of the digits from the tallies are less defined and have a wider range of pixel intensities than

those in the MNIST dataset. Moreover, the digits from the tallies have bounding boxes, stains and

pencils marks and other elements alien to the actual numbers (see Figure A.7 in the Appendix as

an example).

A first step to improve the performance of the base model is to tune some of its hyperparam-

eters by using grid search. This method identifies which settings lead to the best performance (in

our case, accuracy in the validation sample). We ran several iterations of the model, each of them

combining different values of the following hyper-parameters: number of convolutional layers,

number of filters in each layer, dropout rate, size of the fully connected layers, and number of

epochs. Every specific setting starts training the model from scratch using the 60,000 examples

from the MNIST dataset and evaluates its performance on the digits from the tallies. Table A.3 in

the Appendix shows several examples of these model options and their respective accuracy.

After testing different hyperparameter settings, our fine-tuned model contains three convolu-

tional layers (with 32, 32 and 112 filters of size 3×3, respectively), a dropout rate of 0.2, and denser

14All the models in this section include ReLu activation layers (unless specified), a categorical cross-entropy loss
function due to the nature of the outcome of interest, and the Adam optimizer.

22

fully-connected layers (with 110 and 30 nodes respectively). Figure A.5 in the Appendix details

the architecture and characteristics of this network. We also found the optimal amount of training

after 45 epochs. The accuracy of the fine-tuned model on our validation data is 0.3720, almost

0.0475 higher than the base model. While this is an important gain in accuracy, we still want to

achieve higher levels.

Thus, the next step uses transfer learning (see Section 3.5) in order to improve the classification.

This step involves retraining the model using now the 24,271 labeled digits from the tallies and

freezing the first convolutional layer of the fine-tuned model. “Freezing” the first layer implies

that we load the weights found by the fine-tuned model using only MNIST digits as training data.

We perform data augmentation on the training set comprised of digits from real-world tallies. This

approach significantly improves the model performance on the prediction of digits from tallies:

the accuracy scores in the validation and test sets are 0.9495 and 0.9659, respectively.15

Finally, we checked and tried to interpret the reasons behind the model errors. In this case,

many misclassified examples are digits misplaced outside the guiding box (see example A.8 in the

Appendix). Other mistakes were due to almost illegible numbers or specific handwriting styles

that confounded “4” for “9.” As explained in Section 3, these examples spotlight the importance

of the post-classification process to understand the sources of errors, identify problematic cases,

and conduct parameter tuning. Such a process requires humans actively finding out the sources

of error in the model and correcting the most important mistakes. With this example we want to

stress that using CNNs to classify images should not eliminate human intervention, but should

rather limit it to the most crucial or controversial decisions.

To check the general validity of the model predictions, we calculate the parties’ vote total

in Mexico City’s #15 Congressional district. The digits from the tallies of this district form our

target sample16. Since all the vote counts have three digits, including leading zeros, we estimate

the “uncertainty” around a prediction with a weighted-average of the label probabilities for each

digit in the vote count. This weighted mean assigns more importance to the errors that happen in

the hundreds than in the tens or units. For example, if the model mislabels a “9” for a “4,” the bias

15In Figure A.6 in the Appendix we present the history of both the loss and accuracy in the validity and training
samples, with the objective of tracking improvements in the validity sample while avoiding overfitting.

16We chose this district because the quality of the scanning was high, allowing us to conduct a more careful analysis
of the sources of errors and misclassification.

23

in the vote count would be larger when the vote count is “931” (underestimating the vote count

by 500 votes) than when it is “139” (when the bias would be of only 5 votes).17 Once we compute

the weighted mean of all the vote counts per tally, we label those with a mean larger than 0.9 as

“high quality.”

Figure 4 compares the estimated vote shares for each party (crosses for all tallies; triangles

for “high quality” tallies) with those reported by the electoral authority (circles).18 As the plot

shows, the CNN recovers proportions similar to the official ones, and this performance improves

when using high quality tallies. Overall, the method is able to correctly identify the ranking and

magnitude of vote counts. This accurate identification illustrates the applicability of CNNs and

their power for data collection tasks.

Figure 4: Vote proportions by party in District 15: Official vs. Predicted

0.0 0.1 0.2 0.3 0.4

PAN

PRI

PRD

PVEM

PT

MC

PANAL

MORENA

PH

ES

PRD−PT

CNR

VN

Vote percentages by party (Predictions and True values)

Percentage of votes (District 15)

With high quality tallies
With all tallies
Official results

The example above illustrates the usefulness of CNNs to extract information from large pools

17The weights for the probabilities for the hundred, ten and unit positions are 0.5, 0.35 and 0.15, respectively. Notice
that these weights are simply giving more importance to some digits than others when computing the uncertainty
of a full vote count. They should not be confused with the “weights” of the features that the CNN uses to optimize
predictions and that we discussed above.

18In the Appendix we also present a comparison between predicted and observed vote counts at the tally level for a
finer level of analysis.

24

of images in an efficient, fast, and reliable way. At the same time, this example also acknowledges

the limitations of CNNs when it comes to completing certain tasks.

6 Conclusion

Using computer vision techniques for image-retrieval and classification can extend the scope of

the data, theory, and implications underlying the study of several social phenomena. In this paper

we presented a comprehensive guide for researchers interested in using Convolutional Neural

Networks for visual content coding and classification. We presented the intuition behind CNNs,

highlighted their potential, and described their structure and implementation.

CNNs have a wide variety of applications in multiple fields of the social sciences. They can be

applied to similar data collection problems like the one outlined in the text: retrieving signatures

or the votes that were whipped for a given policy registered in historic documents, classifying

written notes, or even the extraction and interpretation of symbols. They can also be applied to

the coding of more complex political phenomena. Examples may include identifying the senti-

ment of material from electoral campaigns (Lucas, 2018b), recording the activities of crowds in a

protest (Won, Steinert-Threlkeld and Joo, 2017; Zhang and Pan, 2019), counting the number of peo-

ple waiting to vote in polling stations (Stein et al., 2020), measuring social polarization (Dietrich,

Forthcoming), assessing media bias in the photographic coverage of candidates (Neumann, 2019),

or detecting the demographic composition of a neighborhood (Wilcox-Archuleta, 2019). In an era

where pictures and videos have an increasing role in shaping public opinion, elite decisions and

political dynamics, the extraction of information from images and visual content invite a wider

variety of relevant questions.

In this article, we outlined the structure, functioning and implementation of CNNs with the

objective of making the tool more accessible to social scientists interested in using visual content

to address such questions. With the application of a CNN to code information from vote tallies we

also illustrate the challenges that the “real world” data in which we are interested pose to standard

and well-tested models in computer science. We also provide a list of practical recommendations

and advice that we hope will help social scientists to immerse in the field of deep learning and

CNNs.

25

The study of new data sources both complements and enhances the knowledge that we al-

ready have about the political world. However, these opportunities should be paired with a deep

understanding of the characteristics, mechanisms, and consequences of tools like CNNs. Our in-

tention is to illustrate the benefits and substantive impact of CNNs for social scientists, but also to

present some of the challenges and practical issues that researchers should consider when dealing

with visual data. Our hope is that this article encourages scholars to apply CNN to their own

analysis while avoiding the most common misunderstandings and pitfalls of this tool.

Data Availability Statement

Replication code for this article has been published in Code Ocean, a computational reproducibil-

ity platform that enables users to run the code and can be viewed interactively at Cantú and

Torres (2020a) at https://doi.org/10.24433/CO.3401138.v1. A preservation copy of the same

code and data can also be accessed via Dataverse at Cantú and Torres (2020b) at https://doi.

org/10.7910/DVN/UNYOLF.

26

https://doi.org/10.24433/CO.3401138.v1
https://doi.org/10.7910/DVN/UNYOLF
https://doi.org/10.7910/DVN/UNYOLF

References

Anastasopoulos, L. Jason, Dhruvil Badani, Crystal Lee, Shiry Ginosar and Jake Williams. 2016.
“Photographic home styles in the House and Senate: a computer vision approach.” Working
Paper.

Barberá, Pablo. 2015. “Birds of the Same Feather Tweet Together. Bayesian Ideal Point Estimation
Using Twitter Data.” Political Analysis 23(1):76–91.

Boureau, Y-Lan, Jean Ponce and Yann LeCun. 2010. A theoretical analysis of feature pooling in
visual recognition. In Proceedings of the 27th international conference on machine learning (ICML-10).
pp. 111–118.

Boxell, Levi. 2020. “Slanted images: Measuring nonverbal media bias.” Working Paper.

Buda, Mateusz, Atsuto Maki and Maciej A Mazurowski. 2018. “A systematic study of the class
imbalance problemin convolutional neural networks.” Neural Networks (106):249–259.

Buduma, Nikhil and Nicholas Locascio. 2017. Fundamentals of deep learning: Designing next-
generation machine intelligence algorithms. O’Reilly Media.

Cantú, Francisco. 2019. “The Fingerprints of Fraud: Evidence from Mexico’s 1988 Presidential
Election.” American Political Science Review 113(3):710–726.

Cantú, Francisco and Michelle Torres. 2020a. Replication Data for: Learning to See: Convolutional
Neural Networks for the Analysis of Social Science Data. Code Ocean.
URL: https://doi.org/10.24433/CO.3401138.v1

Cantú, Francisco and Michelle Torres. 2020b. Replication Data for: Learning to See: Convolutional
Neural Networks for the Analysis of Social Science Data. Harvard Dataverse p. V1.
URL: https://doi.org/10.7910/DVN/UNYOLF

Casas, Andreu and Nora Webb Williams. 2019. “Images that matter: Online protests and the
mobilizing role of pictures.” Political Research Quarterly 72(2):360–375.

Challú, Cristian, Enrique Seira and Alberto Simpser. Forthcoming. “The Quality of Vote Tallies.”
American Journal of Political Science .

Chan, Philip K and Salvatore J Stolf. 1998. Toward scalable learning with non-uniform classand
cost distributions: A case study in credit card fraud detection. In Proceeding of the Fourth Interna-
tional Conference on Knowledge Discovery and Data Mining.

Chatfield, Ken, Karen Simonyan, Andrea Vedaldi and Andrew Zisserman. 2014. Return of the
Devil in the Details: Delving Deep into Convolutional Nets. In Proceedings of the British Machine
Vision Conference.

Ciresan, Dan Claudiu, Ueli Meier, Jonathan Masci, Luca Maria Gambardella and Jürgen Schmid-
huber. 2011. Flexible, high performance convolutional neural networks for image classification.
In Twenty-Second International Joint Conference on Artificial Intelligence.

Coüasnon, Bertrand, Jean Camillerapp and Ivan Leplumey. 2007. “Access by content to handwrit-
ten archive documents: generic document recognition method and platform for annotations.”
International Journal of Document Analysis and Recognition (IJDAR) 9(2-4):223–242.

27

Dietrich, Bryce J. Forthcoming. “Using Motion Detection to Measure Social Polarization in the
U.S. House of Representatives.” Political Analysis .

Dietrich, Bryce J, Matthew Hayes and Diana O’Brien. 2019. “Pitch Perfect: Vocal Pitch and the
Emotional Intensity of Congressional Speech.” American Political Science Review 113(4):941–962.

Dietrich, Bryce J, Ryan D Enos and Maya Sen. 2019. “Emotional arousal predicts voting on the US
supreme court.” Political Analysis 27(2):237–243.

Gong, Yunchao, Liwei Wang, Ruiqi Guo and Svetlana Lazebnik. 2014. Multi-scale orderless pool-
ing of deep convolutional activation features. In European conference on computer vision. Springer
pp. 392–407.

Goodfellow, Ian, Yoshua Bengio and Aaron Courville. 2016. Deep Learning. Cambridge, MA: MIT
Press.

Grimmer, Justin and Brandon Stewart. 2013. “Text ad Data: The Promise and Pitfalls of Automatic
Content Analysis Methods for Political Texts.” Political Analysis 21(3):267–297.

Han, Shizhong, Zibo Meng, Zhiyuan Li, James O’Reilly, Jie Cai, Xiaofeng Wang and Yan Tong.
2018. Optimizing filter size in convolutional neural networks for facial action unit recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5070–5078.

Homola, Jonathan. 2018. “The Political Consequences of Group-Based Identities.” Working Paper.

Huang, Sheng-Jun, Rong Jin and Zhi-Hua Zhou. 2014. “Active Learning by Querying Informative
and Representative Examples.” IEEE Transactions on Pattern Analysis and Machine Intelligence
36(10):1936–1949.

Huff, Connor D. 2018. “Why Rebels Reject Peace.” Working Paper.

Ioffe, Sergey and Christian Szagedy. 2015. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.” arXiv:1502.03167.

Japkowicz, Nathalie and Shaju Stepehn. 2002. “The Class Imbalance Problem: A Systematic
Study.” Intelligent Data Analysis 6(5):429–449.

Kiranyaz, Serkan, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj and Daniel J. In-
man. 2019. “1D Convolutional Neural Networks andApplications–A Survey.” arXiv:1905.03554.

Kubat, Miroslav, Robert C. Holte and Stan Matwin. 1998. “Machine learning for the detection ofoil
spills in satellite radar images.” Machine Learning 30(2-3):195–215.

LeCun, Yann, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard and Lawrence D Jackel. 1989. “Backpropagation applied to handwritten zip code
recognition.” Neural computation 1(4):541–551.

Lee, Chen-Yu, Patrick W Gallagher and Zhuowen Tu. 2016. Generalizing pooling functions in
convolutional neural networks: Mixed, gated, and tree. In Artificial intelligence and statistics.
pp. 464–472.

Lipton, Zachary C. 2016. The Mythos of Model Interpretability. In 2016 ICML Workshop on Human
Interpretability in MachineLearning (WHI 2016).

28

Lladós, Josep, Partha Pratim-Roy, José A Rodríguez and Gemma Sánchez. 2007. Word spotting in
archive documents using shape contexts. In Iberian Conference on Pattern Recognition and Image
Analysis. Springer pp. 290–297.

Lucas, Christopher. 2018a. “Neural Networks for the Social Sciences.” Working Paper.

Lucas, Christopher. 2018b. “A Supervised Method for Automated Classification of Political
Video.” Working Paper.

McCarty, Nolan, Keith T. Poole and Howard Rosenthal. 2006. Polarized America. The MIT Press.

Miller, Blake, Fridolin Linder and Walter R. Mebane. 2020. “Active Learning Approaches for
Labeling Text: Review and Assessment of the Performance of Active Learning Approaches.”
Political Analysis pp. 1–20.

Nair, Vinod and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted boltzmann
machines. In ICML’10 Proceedings of the 27th International Conference on International Conference
on Machine Learning, ed. Johannes Fürnkranz and Thorsten Joachims. pp. 807–814.

Neumann, Markus. 2019. “Fair and Balanced? News Media Bias in the Photographic Coverage of
the 2016 U.S. Presidential Election.” Working paper.

Nguyen, Anh, Jason Yosinski and Jeff Clune. 2015. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 427–436.

Pan, Sinno Jialin, Qiang Yang, Wei Fan and Sinno Jialin Pan. 2010. “A survey on transfer learning.”
IEEE Transactions on Knowledge and Data Engineering .

Qin, Zhuwei, Fuxun Yu, Chenchen Liu and Xiang Chen. 2018. “How Convolutional Neural Net-
works See the World — A Survey of Convolutional Neural Network Visualization Methods.”
Mathematical Foundations of Computing 1(2):149–180.

Ranzato, Marc’Aurelio, Y-Lan Boureau and Yann L Cun. 2008. Sparse feature learning for deep
belief networks. In Advances in neural information processing systems. pp. 1185–1192.

Rosebrock, Adrian. 2017. Deep Learning for Computer Vision with Python: Starter Bundle. PyImage-
Search.

Ruder, Sebastian. 2016. “An overview of gradient descent optimization algorithms.”
arXiv:1609.04747 .

Rumelhart, David E., Geoffrey E. Hinton and Ronald J. Williams. 1988. “Learning representations
by back-propagating errors.” Cognitive Modeling 5(3).

Sabour, Sara, Nicholas Frosst and Geoffrey E Hinton. 2017. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems. pp. 3856–3866.

Schrodt, Philip A. 2004. “Patterns, rules and learning: Computational models of international
behavior.” Working Paper.

Settles, Burr. 2009. “Active Learning Literature Survey.” Working paper.

29

Shang, Wenling, Kihyuk Sohn, Diogo Almeida and Honglak Lee. 2016. Understanding and im-
proving convolutional neural networks via concatenated rectified linear units. In International
Conference on Machine Learning. pp. 2217–2225.

Simonyan, Karen and Andrew Zisserman. 2014. “Very deep convolutional networks for large-
scale image recognition.” arXiv:1409.1556 .

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan Salakhutdinov.
2014. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” Journal of Ma-
chine Learning Research 15:1929–1958.

Stein, Robert M., Christopher Mann, Charles Stewart, III, Zachary Birenbaum, Anson FungJed
Greenberg, Farhan Kawsar, Gayle Alberda, R. Michael Alvarez, Lonna Atkeson, Emily Beaulieu,
Nathaniel A. Birkhead, Frederick J. Boehmke, Joshua Boston, Barry C. Burden, Francisco Cantu,
Rachael Cobb, David Darmofal, Thomas C. Ellington, Terri Susan Fine, Charles J. Finocchiaro,
Michael D. Gilbert, Victor Haynes, Brian Janssen, David Kimball, Charles Kromkowski, Elena
Llaudet, Kenneth R. Mayer, Matthew R. Miles, David Miller, Lindsay Nielson, Yu Ouyang,
Costas Panagopoulos, Andrew Reeves, Min Hee Seo, Haley Simmons, Corwin Smidt, Far-
rah M. Stone, Rachel VanSickle-Ward, Jennifer Nicoll Victor, Abby Wood and Julie Wronski.
2020. “Waiting to vote in the 2016 presidential election: Evidence from a multi-county study.”
Political Research Quarterly 73(2):439–453.

Steinert-Threlkeld, Zachary, Jungseock Joo and Alexander Chan. 2019. “How Violence Affects
Protests.” Working paper.

Taylor, Ula. 2008. “Women in the documents: Thoughts on uncovering the personal, political, and
professional.” Journal of Women’s History 20(1):187–196.

Webb Williams, Nora. 2019. “Automated Image Taggers from Amazon, Google, and Microsoft:
Are They Useful for Social Science Research.” Working Paper.

Webb Williams, Nora, Andreu Casas and John D. Wilkerson. Forthcoming. Images as Data for Social
Science Research: An Introduction to Convolutional Neural Nets for Image Classification. Cambridge
University Press.

Wilcox-Archuleta, Bryan. 2019. “Measuring Neighborhood Level Ethnic Visibility: Evidence from
Street View Images.” Working paper.

Won, Donghyeon, Zachary C Steinert-Threlkeld and Jungseock Joo. 2017. Protest activity detection
and perceived violence estimation from social media images. In Proceedings of the 25th ACM
international conference on Multimedia. ACM pp. 786–794.

Zeiler, Matthew D and Rob Fergus. 2014. Visualizing and understanding convolutional networks.
In European conference on computer vision. Springer pp. 818–833.

Zhang, Han and Jennifer Pan. 2019. “CASM: A Deep-Learning Approach for Identifying Col-
lective Action Events with Text and Image Data from Social Media.” Sociological Methodology
49(1):1–57.

Zhang, Xingzhou, Yifan Wang and Weisong Shi. 2018. pCAMP: Performance Comparison of Ma-
chine Learning Packages on the Edges. In USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18). Boston, MA: USENIX Association.

30

	Introduction
	A Primer on Convolutional Neural Networks (CNNs)
	Image Pre-Processing
	Feature representation
	Learning

	Practical recommendations
	Building a CNN architecture
	Software
	Finding the right amount of training
	Optimizing your training set
	Transfer learning
	Validate and check the results

	A warning note: The limits of CNNs
	Application: Coding Electoral Results from Vote Tallies
	Conclusion

