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1 Introduction

Computers have increasingly taken over tedious and repetitive tasks previously assigned to hu-

mans. From counting words in a file to performing long and complex calculations, machines are

able to follow a set of instructions in a repetitive manner without fatigue or cognitive bias. Their

capacity to perform quickly and reliably allows us to analyze information from a large amount

of data such as roll-call votes (McCarty, Poole and Rosenthal, 2006), congressional floor speeches

(Dietrich, Hayes and O’Brian, 2019; Dietrich, Enos and Sen, 2019), or social media posts (Barberá,

2015).

And yet, despite their capacity to analyze textual or numeric information, computers have his-

torically underperformed when classifying visual data. In principle, computers would be able to

find all images containing a specific candidate if we provide specific rules describing the physical

characteristics of the individual (e.g., the form of her nose, the distance of her nose to her eyes,

and the size of her forehead). But computers’ ability to follow a set of rules when classifying an

image can actually be their main limitation. The directives we give to a computer could be in-

sufficient to identify those pictures in which the individual is not facing the camera or wearing

sunglasses. In an even subtler dimension, the computer might struggle to identify the individual

if the lighting differs substantially from one picture to another. Of course, we can provide more

instructions for the computer, but the instruction list would be as vast as the number of ways in

which an individual may appear in a picture.

To overcome those challenges, recent developments in computer science propose an alterna-

tive approach to retrieve information from images. Rather than following a set of given rules, com-

puters are now exposed to multiple examples that allow them to identify visual patterns across

images. This process, inspired by the way in which humans learn to digest visual content, allows

computers to gradually glean patterns of colors, edges, contours and textures that correspond to

a given object. This learning process allows the computer to identify and track an object under

various conditions.

This paper introduces to political science the use of CNN as a reliable, cost-effective way to

classify pictures. In particular, we present this method as an alternative tool for the tedious task of

analyzing, coding and classifying large-scale image collections. Our main goal is to provide gen-
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eral guidelines on how CNNs work and to discuss the challenges and problems that researchers

might encounter when using this tool by focusing on a canonical example of data collection and

processing. To illustrate this methodology, we apply a CNN to a relevant issue in election science:

coding voting results. We present a way to collect the handwritten results registered in vote tallies

from the 2015 federal election in Mexico, captured in a set of comprehensive images. This example

allows us to illustrate the characteristics of this method and the intuition behind its performance,

providing an exhaustive guide for its implementation while still highlighting the challenges it

poses, as well as offering recommendations and alternatives to overcome those challenges.

The use of CNNs can help social scientists expand research on topics like the visual tone of

campaign coverage (Lawson and McCann, 2004; Druckman and Parkin, 2005), the portrayals of

protests (Casas and Webb Williams, Forthcoming; Torres, 2018; Won, Steinert-Threlkeld and Joo,

2017), and the camera-recorded interactions between police officers and citizens (Makin et al.,

Forthcoming). Further, analyzing images of documents allows researchers to recover and collect

information such as signatures, annotations or signs of alterations to answer questions related to,

for instance, the decision to continue fighting in a war (Huff, 2018), historical political participation

(Homola, 2018), or electoral fraud (Cantú, 2018).

On the other hand, this paper stresses the limitations of the methodology and the risks of its

mindless application in social sciences. A valid concern regarding CNNs stems from their opacity

for linking the inputs and the model outputs (Nguyen, Yosinski and Clune, 2015; Sabour, Frosst

and Hinton, 2017; Zeiler and Fergus, 2014). Such warning should deter scholars from applying

this method to identify latent dimensions or ambiguous features in the data. Since post-hoc inter-

pretations to the outcomes of a deep learning model largely depend on the researcher’s subjective

intentions (Lipton, 2016), we emphasize the importance of establishing transparent goals when

using the model and restricting its application to tasks that could be performed, in principle, by a

human.

The article intends to guide social scientists through the mechanisms in which CNNs work,

to “translate” the language of computer science into terms and concepts that are more familiar to

social scientists. We acknowledge that the methodology includes plenty of jargon. While some

of these names have to do with exclusive concepts from computer science, many of them have an

equivalent label that is familiar to most political scientists. The Appendix includes a glossary of
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these terms, which we identify with italics in the text.

We first introduce what CNNs are and explain each stage in the process. Next, we illustrate the

practicability of this tool by applying CNNs to capture the vote results of the 2015 election in Mex-

ico directly from vote tallies. Finally, we provide a list of challenges and recommendations when

applying these tools, as well as a discussion of the limitations of CNNs for certain measurement

and classification tasks.

2 A Primer on Convolutional Neural Networks (CNNs)

A CNN is a special case of a neural network, which consists of a set of inter-related nodes that

classify data after processing a set of training examples. The main components of these networks

are the neurons, which have the task of receiving an input, transforming it, and sending the new

output to other neurons. Neurons transform the input received according to their activation func-

tion. The output of this activation function becomes a signal that another neuron will use as an

input for its own computation. The relevance of every released signal for the final outcome is de-

termined by the weights between the emitting and receiving neurons. Positive weights amplify the

signals and highlight their contribution to the output, while negative weights weaken the signal to

which they are attached. At the end of the network, there are as many nodes as labels of interest.

Each final node delivers the probability that the original input belongs to each specific label. The

neural network tries to minimize the errors in predictions by gradually modifying the weights of

the preceding nodes (Schrodt, 2004; Lucas, 2018).

CNNs distinguish themselves from other types of neural networks by their capacity to process

visual inputs. CNNs are organized into layers, or sets of neurons representing specific visual

features of edges, blobs, textures or colors. Each neuron convolves with sub-regions of the original

image to search for similar visual patterns. In essence, this technique addresses the complexity

of representing simple objects by reducing the high dimensionality of images. Thus, instead of

attributing meaning to raw pixel intensities, the CNN summarizes the content of an image by

using informative features and patterns that are learned throughout the process.1.

1Deep belief networks use the raw pixel intensities as inputs. However, beyond concerns for computational capacity,
they show a poor performance given that they do not have built-in invariance with respect to translations or local
distortions of the data. Further, the risk of overfitting using these techniques is high (LeCun and Bengio, 2003)
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To describe the functionality of CNNs, we divide the process into three parts. First, the pre-

processing stage transforms the image into a format that can be read by the computer. Next, the

feature extraction stage deconstructs the image into multiple visual components, each represent-

ing a specific visual feature. Finally, the classification stage uses the image’s components to classify

the image into one of the available categories Figure 1 illustrates these stages and provides a road

map for the figures in the manuscript, detailing and illustrating each step. We explain below the

logic behind each of the stages, as well as the decisions available to the researcher at each of them.

Figure 1: Convolutional Neural Network Structure
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FEATURE EXTRACTION CLASSIFICATIONPRE-PROCESSING

2.1 Image Pre-Processing

For the computer to analyze visual information, it is first necessary to represent the image as a

numerical array where each of the entries has a specific pixel value. Figure 2(a), for example,

illustrates how a handwritten number of 13 (height) × 13 (width) pixels can be transformed into

a matrix of 13 × 13 = 169 units, each of them specifying the light intensity of a specific pixel.2 In

2The concept of “amount of light” might seem counterintuitive when expressed in mathematical form: In practice,
a value of “0” corresponds to a black pixel, while “255” represents a white pixel. To avoid confusion and for illustrative
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the case of a color image, the transformation would produce three matrices of the same size, one

for each primary color channel (red, green, and blue).

The resulting input matrix is the core unit of analysis. The goal of the CNN is to extract the

most relevant information from this matrix while gradually reducing its dimensionality. However,

the way in which CNNs extract the information tends to give less importance to the features on

the edges of the image given that the convolution in these areas is partial. We prevent this problem

by applying zero-padding, or appending a perimeter of zeros to the input matrix. The example in

Figure 2(b) shows a zero padding of p = 1, increasing the numerical array to 15× 15.

Figure 2: Image Pre-processing of a handwritten “1”
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(a) Image Transformation (b) Zero Padding

2.2 Feature Extraction

Once the image enters into the network, it is decomposed into single components. The decom-

position process consists of computing the dot product of the input matrix with a set of smaller

matrices, called filters, which represent a particular visual feature. The first layers include repre-

sentations as basic as straight lines (see Figure 3 as an illustration), and subsequent layers build

up on those features and transition from lines to contours, to shapes, and to objects (Buduma

and Locascio, 2017). The more layers a CNN has, the more complex features of the image will be

purposes, we take higher numbers in the matrixes presented as higher concentrations of “ink”. Therefore, higher
numbers correspond to darker pixels.
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recognized (Qin et al., 2018).

Within each layer, filters slide across the width and height of the input matrix to obtain the

dot product with a particular area of the image, also called receptive field. This dot product is the

convolution part of the CNN. The entries in each filter matrix can be understood as weights on pixel

intensity that altogether form relevant or informative patterns. We are interested in learning the

relevant combinations of weights that are associated with our outcome labels, just as we want

to learn the importance of coefficients in a regression model. Thus, a convolutional layer is a

collection of filters extracting different information from the same input matrix.

To describe in detail how convolution works, we need to specify three parameters of this op-

eration. First, the filter size is the product of the filter’s width and height. This parameter sets out

the type of features identified during the convolution. Small filters capture fine-grained details,

but they are likely to mix up the relevant information from an image with its noise. On the other

hand, large filters look for details of a larger size at the cost of a lower specificity. For example,

Figure 3 presents simplified examples of filters of size 9. Second, the filter stride is an integer num-

ber defining how many pixels the filter will slide through the image. The smaller the stride, the

more information from the image is preserved during the convolution.3 Finally, the layer depth

defines the number of filters in the layer. This value, therefore, indicates how many features will

be searched for in the layer. The optimal choice for these elements depends on our data and clas-

sification goal in every case.4 Figure 3, for instance, represents the filters of a layer with depth

12.

We illustrate how a convolution process works in Figure 4. In this example, we take the top-left

filter displayed in Figure 3 and use a stride of 3. The convolution process then involves computing

the dot products of the filter and the values of every equivalent pixel space in the image. In this

example, the dot product between the entries of the filter and the input of the highlighted image

area is 2.2. The filter then slides three steps to the right and computes again the dot product of

3The magnitude of this parameter depends on the size, dimensions and characteristics of the data and CNN. For a
comparison of model performances using different strides and filter size, see Simonyan and Zisserman (2014).

4For the CNN used in this article, the filters in the first layer are initialized randomly using the Glorot
uniform method. Also known as Xavier, this initializer draws samples from a uniform distribution: W ∼
U
(

−6
uin+uout

, 6
uin+uout

)
, where uin is the number of input units in the weight tensor, and uout is the number of out-

put units in the weight tensor. In most canned architectures, it is not necessary to define the initialization of these
filters.

7



Figure 3: Examples of filters

Note: This figure displays examples of filters of size 3×3 = 9 that were randomly initialized in the first layer of a CNN.

its entries. The result of this operation is the feature map at the right of Figure 4, which shows

the image regions with the largest dot products for this filter. The convolution process will create

as many feature maps as filters specified in the layer depth, and the size of each feature map is

defined by:

feature map size =
(input width× input length)− filter size + (2× zero padding)

stride + 1
(1)

Figure 4: Illustration of the Convolution Stage
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Since the resulting feature map is a linear transformation of the input matrix, adding more
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convolutional layers at this point would be redundant—the result could be obtained with a single

linear product. Such feature maps are unlikely to produce smooth gradients, a necessary input for

the learning phase described in Section 2.3. To address this problem, it is necessary to include an

activation layer, which performs a non-linear mathematical operation upon the input values. The

non-linearity property allows CNNs to stack multiple layers and extract more information from

the image.

We illustrate three of the most common activation functions in Figure 5. The first one, Sigmoid,

is simply the inverse of the logistic function. As the figure shows, this function bounds the acti-

vation values to the [0, 1] range. The second activation function is Tahn, is a linear transformation

of Sigmoid that zero-centers the outputs and bounds them to the [−1, 1] interval. While both func-

tions are very sensitive to input values closer to 0, their output becomes flat near its boundaries,

limiting the network to learn from inputs with either very low or very high activation values. Ad-

dressing these issues, the Rectified Linear Unit (ReLU) is a non-saturated function that keeps the

original input value when it is positive and transforms all negative values to 0. ReLU usually in-

creases the learning speed of the network, and is now the standard activation function in practice

(Nair and Hinton, 2010). Again, the choice of any of these or other activation functions depends

on the performance of each of them to the specific data in question.

Figure 5: Example of Activation Functions
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Once the activation map includes non-linear outputs, we proceed to reduce its dimensionality

using a pooling layer. A pooling layer shrinks the size of the matrix while keeping the most im-
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Figure 6: Illustration of the non-linear activation and pooling
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portant information in the feature map. The information of a submatrix is summarized differently

depending on the type of pooling layer applied. For example, it can get the largest value (max

pooling), the smallest value (min pooling), or the average value (mean pooling) of a specific pixel

area.

Figure 6 illustrates the nonlinear transformation of our feature map using a Tanh function. Af-

ter that, we apply max-pooling to keep the largest value from every 2x2 pixel area of the matrix. The

resultant matrix generalizes the properties of the image, forcing the CNNs to pay more attention

to whether a feature fits in the image regardless of the location of such feature.

The process is repeated for each of the filters in the first layer, and each of the resultant feature

maps becomes the input for the second convolutional layer. This new convolutional layer repeats

all of the steps described above, where the new filters slide through the feature maps to now look

for more complex features, such as a combination of lines or edges. The more layers we include in

the network, the more complex features it is able to extract and learn from the images.

2.3 Learning

During the learning stage, the network processes the input information by identifying those fea-

ture maps and their corresponding weights that are more likely to define a given outcome label.

The learning process occurs throughout several iterations in which the predictions from the net-

work are compared to the actual true outputs to have a measure of error. The model’s goal is to

find an optimal combination of feature maps and weights that minimize the disparities between

true and predicted labels.

The predicted labels are the outputs of the last layer, in which the feature maps are flattened

and stacked into a single vector to create a fully connected neural network. This is, a network
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where all the nodes are connected, so changes in one node alter the output of another node. More

concretely, if we have 10 outcomes of interest as shown in Figure 1, the network outputs a set of

probabilities of belonging to each of these outcomes. The dependency between nodes in these

fully connected layers implies that if we have an increase in the probability that an input digit is

a “3”, then the probability of not being a “3” (the combined probability of being one of the rest of

the digits) has to decrease.

If the classification goal is only between two labels, the CNN maps predictions to these prob-

abilities using a Sigmoid layer (recall Figure 5(a)) or inverse logit. When the number of labels is

greater than two, the probabilities are estimated through a softmax layer layer, which is the equiva-

lent of a multinomial logistic function. In the example described above, since we want to identify

the image from Figure 2(a) as a digit value, the last layer of our network has 10 neurons or outputs,

one for every digit from 0 to 9. Each neuron will provide a probability that the image belongs to

each digit, and the CNN will attach the label with the highest estimated probability.

The model gradually calibrates the estimated probabilities as it revisits the examples in the

training set. This process tries to emulate the way in which infants learn to recognize object cate-

gories. As they are exposed to multiple examples, young children subconsciously assimilate the

distinctive properties of an object until they can identify an object without observing all of its

features.5 Similarly, CNNs review multiple examples of an object to gradually identify salient

features, determine their relevance, and estimate how much each of them helps to identify the

object across other images. Computer science labels such process as backpropagation (Rumelhart,

Hinton and Williams, 1988), and it consists of minimizing the error of the model’s predictions by

gradually calibrating the weights in each feature map among the neurons in the network.

This error optimization process requires finding those points in a high-dimensional space

where the derivative of the error function is zero. To achieve that goal, the CNN marginally alters

the weight of an individual connection within the layer and looks for the largest variations on

the resulting error. This estimation of change in the multi-dimensional plane, or gradient descent,

allows us to figure out the steepest path that leads to the bottom of the error function. We present

a more technical description of this process in the Appendix.

5However, humans execute this process better, faster and more efficiently than computers. While the number of
samples that a child requires to learn how a particular object looks like is relatively small, a computer requires a signif-
icantly larger number of training samples to learn features more accurately.
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The learning phase requires training the model after specifying a few practical features. First,

it is necessary to define the number of epochs, or the number of times that all training examples

pass through the network. Since the gradient descent is an iterative process, we need several

epochs to optimally fit the weights to the model. Too many epochs, however, are likely to pro-

duce overfitting and reduce the generalizability of the model’s predictions (see Subsection 4.1.1).

Unfortunately, there is not an optimal number of epochs with which to train a model, and its final

setting depends on the specific characteristics of the training database and a close tracking by the

researcher.

Second, we need to define the batch size, or the number of training images that will pass

through the network before the model updates its weights. It is possible to set the batch size

to the total number of training images, so the model would update its weights once per epoch.

This modality requires accumulating the prediction errors across all of the images in the training

set, a task that can demand a lot of computational memory. It also produces a static error surface,

where the gradient descent is likely to get stuck in a local minimum. Alternatively, we can set the

batch size to one, where the model updates its weights for each training example. This modality

produces a dynamic error surface, decreasing the risk of getting stuck on a flat region. However,

updating the model with every example produces a very noisy signal, making the gradient de-

scent jump around. The sweet spot between both extremes splits the training set into mini-batches,

allowing the model to update its parameters several times during an epoch. Research on the topic

suggests setting the batch size to 32, balancing the noisy training problems of smaller batches as

well as the slower convergence of larger batches (Bengio, 2012; Masters and Luschi, 2018).

Finally, we need to set the learning rate, or the speed at which the gradient descent travels along

the downward slope. This rate specifies the degree to which the CNN will update its weights after

every iteration. A large learning rate will produce large-scale updates on the network weights,

jumping around the function and overshooting its minimum. In contrast, a very small learning

rate is more likely to find a local minimum, but it will take a long time to converge. It is suggested,

then, to start with a large learning rate and gradually decrease it at every iteration (Buduma, 2017).

Finding the optimal learning rate for every parameter can be a demanding task. Fortunately, there

is a variety of optimizers that adaptively tune the learning rates for all parameters in the model.6

6For a very helpful comparison of the most common optimizers, see Karpathy, Andrej. 2019. “CS231n Convolutional
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2.4 Software

There are multiple sources of software to design and run a Convolutional Neural Network. All

the analyses in this paper, including the manipulation and processing of visual material, were con-

ducted using Python 3, and within it, OpenCV and Keras (with a TensorFlow backend). Keras is a

neural networks API written in Python that supports models like CNNs and recurrent networks,

and allows a very accessible, efficient and user-friendly interaction with libraries like TensorFlow,

CNTK and Theano. These are libraries that allow the design, training and implementation of ma-

chine learning models. However, there are other tools that facilitate the design of the architecture

of a CNN, and that also allow researchers to take advantage of pre-trained models. These include,

but are not limited to, Amazon AWS Machine Learning Training, Google Cloud AutoML or Google

Cloud Machine Learning Engine7.

3 Implementation: Coding Electoral Results from Vote Tallies

This section illustrates the use of CNNs for coding factual content from images. Examples of this

type of information involve handwritten notes in treaties and documents, signatures, annotations,

or vote counts. The human transcription of such material is historically either delegated to multi-

ple coders or ignored given the high costs that its processing implies.

We apply CNNs to code the vote results for Mexico’s 2015 federal election. This example

demonstrates the benefits of visual analysis not only to scholars but also to policy practitioners

and election officials looking for a cost-efficient way to speed up the vote tabulation process. For

the specific case of Mexico, the automatic capturing of the electoral results could decrease the rate

of tallies with accidental errors when adding up the votes, which occurs in almost two out of five

tallies in the country (Challú, Seira and Simpser, 2018). Moreover, this technology can also shorten

the time between the closing of the polls and the results announcement, a period of distress for

candidates and voters. Similar problems are found in Florida, Arizona, Haiti, or Argentina, where

the delays for announcing the results spotlight the importance to register the results in a fast

and accurate way.8 We thus propose this tool as a way to increase not only the efficiency of the

Neural Networks for Visual Recognition.” https://cs231n.github.io/neural-networks-3/ (March 30, 2019).
7For a review of these platforms and their performance, see (Williams, 2019).
8The New York Times, “Races in Arizona Still Hang in the Balance.” November 9, 2012. (http://www.nytimes.
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vote count but also citizens’ trust on the impartiality of the process (Atkeson and Saunders, 2008;

Bowler et al., 2015; Pastor, 1999).

Figure 7 shows an example of one of the tallies under analysis.9 We compiled a dataset with

104,979 images of tallies. All ballots have the same content, structure and format. One of the few

differences is the number of parties competing in each district, so therefore the number of rows

with handwritten digits range between 13 and 15.

The first step involves extracting the handwritten numbers of the the tally. Because the align-

ment and orientation might differ from image to image, we decided to develop a function that

identifies the coordinates of three focal points of the tally: the yellow banner at the top of the

page, the bright pink rectangle at the bottom left of the tally, and the pink circle below the table.

The coordinates of these elements, shown inside red rectangles in the first element of Figure 7,

allow us to identify the bottom, top and left lines of the table containing the digits. The green

dashed lines and yellow area in the second element of the diagram illustrates this process. Once

we isolate the table, we divide it into 3× the number of parties/candidates in the district cells. We then

cut and save each cell under the assumption that it contains a digit.10

Figure 8 summarizes the architecture of the CNN for this task. The network consists of two

convolutional and pooling layers interleaved, followed by two fully connected layers and a termi-

nal softmax. To train the model, we apply transfer learning, which involves using the weights of an

com/2012/11/10/us/politics/arizona-races-still-hang-in-the-balance-over-uncounted-votes.html);
Los Angeles Times, “Arizona ballots finally counted – and Latinos ask, Why so long?” November 21, 2012.
(http://articles.latimes.com/2012/nov/21/nation/la-na-nn-arizona-latinos-voting-20121121); and
Tucson Sentinel “Why is Arizona still counting votes?” November 21, 2012. (http://www.tucsonsentinel.com/
local/report/112012_az_vote_count/why-arizona-still-counting-votes/); The New York Times, “Vote Count
Confirms Obama Win in Florida.” November 10, 2012. (http://www.nytimes.com/2012/11/11/us/politics/
florida-to-address-delays-as-it-confirms-obama-victory.html); National Public Radio, “Four Days Later,
Florida Declares For Obama.” November 10, 2012. (http://www.npr.org/sections/thetwo-way/2012/11/10/
164859656/florida-finishes-counting-obama-wins); BBC, “Haiti starts counting votes in long-delayed elec-
tion.” November 21, 2016. (http://www.bbc.com/news/world-latin-america-38042585); Reuters, “Haiti police
clash with demonstrators ahead of election results.” November 22, 2016. (https://www.reuters.com/article/
us-haiti-election/haiti-police-clash-with-demonstrators-ahead-of-election-results-idUSKBN13I05K);
Clarín, “Elecciones PASO 2017: Cristina Kirchner denunciará la “trampa electoral” del Gobierno y
apuntará a todos los votos peronistas.” August 14, 2017. (https://www.clarin.com/politica/
elecciones-paso-2017-cristina-kirchner-denunciara-trampa-electoral-gobierno-apuntara-votos-peronistas_

0_SJghMNJ_Z.html).
9For the purposes of our example, we only show the center panel of the full tally. The original full tally contains a

horizontal panel composed of three sheets: the first one with information about the polling station, the second one with
the tabulation of the votes per party, and the third one with relevant signatures from party representatives and polling
station authorities.

10This, however is not fulfilled in some cases. Although polling staff is supposed to fill all cells and use leading zeros
for 1 and 2-digit numbers, or parties with no support, several ballots have empty cells.
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Figure 7: Example of the image of a tally

existing trained model and tuning them to the new database. Transfer learning allows the model

to adapt information previously learned to reach an acceptable accuracy rate with fewer data and

in a shorter span of time.

Our transfer learning uses the Modified National Institute of Standards and Technology’s

(MNIST) database of handwritten digits (LeCun et al., 1989). This is one of the seminal databases

on visual recognition, and it includes a training set of 70,000 examples of digits written by about

250 writers. The digits in the MNIST dataset are perfectly centered white digits on plain black

backgrounds, without stains, blobs, or inconsistencies. Since our data is similar to the MNIST

database, it is recommended to freeze the first convolutional layer and allow training for the rest

of the components in the network.11 Using the MNIST dataset as a baseline will help the CNN to

find the most core features of every digit. On the other hand, the training process will allow our

model to adapt the weights from the MNIST to our noisier data examples, which are surrounded

by stains, guiding boxes and pencil marks.

11Ananthram, Aditya. 2018. “Deep Learning for Beginners Using Transfer Learning in Keras.” Towards Data Sci-
ence. https://towardsdatascience.com/keras-transfer-learning-for-beginners-6c9b8b7143e (accessed March
21, 2019).
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Figure 8: Network Architecture
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Notes: Figure 8 illustrates the CNN structure applied to identify digit numbers. The inputs of the images
consist of numerical arrays of 28 (height) × 28 (width) pixel values. The network contains two convoluted

layers of 16 and 32 filters, respectively.

Our new training sample for the subsequent layers of the model consists of 26,271 labeled

digits from our tallies, and a testing sample of 2,616 digits. To address the quality issues of the

digits in our tallies we implement data augmentation. This technique creates random variations

of the existing training images by, for example, flipping, flopping, rotating, zooming them out,

or combining all of these alternatives (Chatfield et al., 2014). The random transformations will

force the model to pay less attention to the specific location of a feature on an image and instead

grasp its relationship to other image features. For our example, every time a training image passes

through the network it will be (1) rotated within a [-15,15] degrees range and (2) zoomed in or out

no more than 20% of the original image size.
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3.0.1 Prediction of electoral results and trouble-shooting

The accuracy of this model on the testing dataset with actual digits from the tallies is 96.46%. Fig-

ure 9 shows some of the classifications that we perform on the tallies with the CNN. While the

CNN reach accurate predictions for most of the numbers, it makes a few mistakes implausible to

be human-made. In most cases, however, the errors are due to an inaccurate registration of the

official results on the tallies. For example, the right panel of Figure 9 demonstrates that numbers

written outside the guiding box are likely to be misclassified. The pressure of the handwriting

also affects the accuracy of the predictions. If the digits are almost illegible, the model pools other

elements of the image like the background square to make a prediction. Other mistakes, as in the

case of the 4 classified as a 9, are due to handwriting styles and shared features between num-

bers. These examples spotlight the importance of the post-classification process to understand the

sources of errors, identify problematic cases, and conduct parameter tuning. Such process requires

humans actively finding out the sources of error in the model and correcting the most important

mistakes. This stage needs to make clear that using CNNs to classify images should not eliminate

human intervention, but limit it to the most crucial or controversial decisions.

Figure 9: Examples of predictions
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To check for the ultimate consequences of these errors on the estimated vote totals, we calculate

the results for each party in the congressional district #15 in Mexico City. We chose this district

because the quality of the scanning was high, allowing us to conduct a more careful analysis of

the sources of errors and misclassification. The vote totals per party in this district range from 0

to 176 with 50% of the vote counts equal or lower than 12. If we consider that some of the small

parties and coalitions did not obtain a single vote in certain polling stations, and that there is a

cap on the number of people allowed to vote in each station, then we end up with a right-skewed

distribution of vote counts (see Figure 12 in the Appendix showing the density and quartiles of

the distribution).

Figure 10 presents the comparison of detected and real vote counts in the tallies of District

15. Because of the right skewed distribution, we applied a logarithmic transformation to both

the predicted and real vote counts. Each point in the plot represents the comparison between the

predicted vote counts of each of the parties (including null votes, non-registered candidates, and

coalitions) and the actual votes. The size of the point indicates the frequency of each potential

combination.

Notice that we also added to the plot information about the quality of the predictions of the

digits. Recall that the last layer of the CNN, the softmax layer, outputs a list with the probabilities

that each input digit has of belonging to each of the 10 possible outcomes (0-9). To classify the

number, we take the category with the highest probability of the list. For most of these numbers,

the maximum probabilities are pretty high (above 0.99). However, in cases where the number is

ambiguous, or the model does not have enough information (e.g. the digits in the tally are not

legible), the predictions that the CNN makes are less likely to be accurate. Therefore, we created

an indicator for each vote count registered in each tally that we then use to evaluate its overall

quality.

Most of the vote counts are composed of three digits (including leading zeros), and each of

these digits has a probability of being one of the 10 potential numbers. We created a weighted

average of these probabilities as an indicator of the uncertainty around each vote count. The

reason to use a weighted mean is the following: errors are more costly when they happened in the

hundreds position of a number than in the units. For example, the bias in a vote count prediction

is higher if we confuse a “9” with a “4” when registering a “931” than when the number is “139”.
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In the former we underestimate the vote count by 500, whereas in the latter only by 5.12 Once we

computed the weighted mean of all the vote counts per tally, we label those with a mean equal or

below 0.9 as “moderate quality” and those above it as “high quality.”

Thus, the triangles in Figure 10 show the vote counts in the tallies identified as “moderate

quality”, whereas the blue circles show the “high quality” ones. If the CNN is yielding accurate

predictions, we should see a high density of observations concentrated along the 45 degree dashed

line indicating that the prediction and the official vote counts are equal. We indeed observe a

dense distribution of a large number of observations along the red line. This is especially true for

the high quality tallies: very few deviate from the line. The “moderate quality” observations show

greater deviations, but these do not follow a pattern that would suggest a systematic bias.

To assess the implication of these deviations in the final vote distribution, we compare the pro-

portions in vote counts between the official information and our predictions. This helps with a

more substantive interpretation of how accurate the results are, and can provide evidence regard-

ing the randomness of the error. Each of the dashed lines in Figure 11 represents a party competing

in District 15. The symbols indicate the proportion of the votes that each party achieved in the dis-

trict according to different sources: the official results (circles), and the results using our CNN on

a) all tallies (crosses) and only “high quality” tallies (triangles). As the plot shows, the CNN recov-

ers similar proportions to those of the official results and this performance improves when using

high quality tallies. Overall, the method is able to correctly identify the ranking and magnitude of

vote counts. This illustrates the applicability of CNNs and their power for data collection tasks.

4 Suggestions and warnings

Just like any other method or tool designed to predict outcomes, CNNs face challenges and limi-

tations. In some cases, these roadblocks require additional steps to ensure the quality of results. In

other cases, they demonstrate the limits of CNNs when it comes to performing complex tasks. In

this section we provide a list of both practical and technical issues to consider when training and

running a CNN for classification purposes. Further, we also discuss some of the shortcomings of

CNNs with respect to their scope, interpretability and validation.

12The weights for the hundred, ten and unit positions are 0.5, 0.35 and 0.15 respectively.

19



Figure 10: Number of votes registered in tallies: Official vs. Predicted
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Figure 11: Vote proportions by party in District 15: Official vs. Predicted
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4.1 Recommendations

4.1.1 Deciding when enough training is enough

As with any human-performed task, prediction accuracy for a CNN model comes only with prac-

tice. Every time an image passes through the network, the model reduces its classification error by

calibrating the importance it gives to each filter. The more opportunities for the model to review

an image, the more accurate it becomes at classifying the examples in the training set.

However, training the model for too many iterations will eventually lead to overfitting. This

occurs when the model “memorizes” the features of every training image in a very detailed way,

decreasing its ability to generalize its predictions outside the training examples. A way to avoid

both under-training and overfitting a model requires tracking the performance of the model af-

ter every epoch and comparing the loss values in the training and validity sets. In principle, the

reported loss values for both sets should decrease with the number of epochs. Overfitting takes

place when the validity loss starts increasing even when the training loss continues decreasing.
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This situation dictates the moment to stop training the model and start evaluating its overall per-

formance on the validity set.

We suggest three ways to prevent overfitting while training the model. The first one is to

increase the number of training images. Having a larger training set allows the model to focus

not on the random fluctuations of a few examples, but rather on the visual features that appear

repeatedly across the images. In other words, it forces the model to look for patterns that are more

likely to appear outside the training set. The second suggestion is helpful when we cannot collect

new training examples. In this case, it is recommended to artificially expand the training set with

data augmentation, as argued in Section 3. A final solution involves a technique called dropout

(Srivastava et al., 2014). As its name suggests, this technique “drops out” a random set of neuron

activations before being transferred to the next layer. By ignoring some information units during

a forward or backward pass, we increase the opportunities for the model to learn more robust

features that activate multiple neurons. Dropout also expands the number of training iterations

required to overfit the model.

4.1.2 Optimize your training set

Active learning We recommend picking the most useful instances of each class to train the

model (Settles, 2009). This suggestion is particularly convenient when obtaining additional train-

ing examples is a difficult, time-consuming, or expensive task. Selecting those examples should be

based on two goals: informativeness (i.e., how much the instances help the classifier to improve its

performance) and representativeness (i.e., how well the instances represent the overall input pat-

terns of the entire dataset). Both are rarely achieved simultaneously, and researchers must often

choose which one to prioritize at the cost of the other (Huang, Jin and Zhou, 2014).

Class balance It is also useful to make sure that all classes in the training set are represented

by a similar number of examples (Buda, Maki and Mazurowski, 2018). Class balance prevents

the skewing the model’s predictions toward the label with more training instances (Japkowicz

and Stepehn, 2002). This is a recurrent issue in situations where the positive cases represent a

minority of all the cases, such as locating oil-spills (Kubat, Holte and Matwin, 1998) or identifying

fraudulent bank operations (Chan and Stolf, 1998).
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Image cleaning Another risk when training a model is that it may learn visual features that

are alien to those defining the categories of interest (e.g., ink stains that are not relevant to the

content of a document). To prevent this problem, images should be pre-processed to make sure

they appear as similar as possible. This step may require modifying and cropping irrelevant parts

of the image.

“Denoising” the images involves multiple procedures such as RGB conversion, histogram

equalization, and normalization. RGB conversion converts a color image to a grayscale one and

reduces its dimensionality. This alternative can be useful when, for example, the background color

of an image correlates with each output label. Histogram equalization improves the contrast in

images. It accomplishes this by stretching out the intensity range of the image, increasing the local

contrast and enhancing the definitions of edges in each region of a picture. Normalization scales

all of the images into the same pixel range.

It is also possible to homogenize the data of every training batch. In this case, batch normaliza-

tion transforms the outputs of the convolutional layers to parameters with zero mean/unit vari-

ance, allowing the layer activations to be appropriately handled by any optimization method (Ioffe

and Szagedy, 2015). This technique keeps the network from focusing on outlying activations that

decelerate its learning.

4.1.3 Validate and check the results

An insightful way to improve the model is to review the misclassified images in the validity set. In

our case, this exercise allowed us to find the problems of our model in those instances where the

digit-number images include some of the printed tally features. We also found out that the model

is less accurate when identifying those numbers that show a soft pressure in the handwriting.

These insights will help us include more training images with these characteristics in the next

stage of our project.

Further, as in other fields involving prediction and measurement, validation is key to achiev-

ing better, stronger results. Validating the results will reveal potential sources of errors and pro-

vide information about the model fit. We also suggest another type of validation that involves

the assessment and visualization of the components of CNNs. Zeiler and Fergus (2014); Won,

23



Steinert-Threlkeld and Joo (2017) provide a series of tools to identify and visualize the most rele-

vant features driving the predictions (a process analogous to finding the most reliable and impor-

tant coefficients in a regression). These tools provide information not only about the mechanisms

behind the predictions, but also about the structure and composition of the data, like salient fea-

tures or common patterns among them. For example, some of these tools provide “maps” that

reveal what parts of the image or specific features were most determinant in reaching a prediction

and would then provide the researcher with information to complement or tune the samples in-

cluded in the training pool. A good example of this is a case where the goal was to identify and

tag “sheep” in images. Although the CNNs were doing an optimal job at finding sheep in open

fields, the accuracy decreased drastically when the picture featured a human holding a sheep.

A more profound analysis of the situation evidenced that the features helping the algorithm to

reach a conclusion of whether there were sheep in the pictures were related to the characteristics

of the field (green, grass, pasture) rather than to the actual features of the animals. Therefore, the

examination of the outputs improves our understanding of the data and the mechanisms behind

predictions.

4.2 Warnings: The limits of CNNs and deep learning

Throughout this article, we present the functioning and components of CNNs, as well as an illus-

tration of their applicability to data collection for social science purposes. The examples show that

CNNs are powerful tools to automatize the extraction of information from large pools of images

in an efficient, fast and reliable way. However, we have also illustrated some of the challenges and

complications that arise in even relatively straightforward, textbook cases, such as handwriting

detection. While it is possible to ameliorate the most common technical issues, it is also important

to acknowledge the limitations of CNNs to complete certain tasks.

We mention some of the most important flaws for CNNs when solving complex tasks. First,

unlike humans, CNNs do not account for the pose and orientation of objects in a picture. Ideally,

we would like to emulate how humans process visual content: identify an object regardless of

its size or whether it is rotated. However, CNNs focus only on routing the pixel information to

the neurons in charge of detecting features without adding any information about their relative
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position and orientation. Similarly, the neurons ignore information about the location and sur-

roundings of those features. For example, if a CNN is in charge of detecting faces and it identifies

features associated with eyes, a nose and a mouth, then it does not matter if the eyes are below the

nose and above the mouth, as in an abstract puzzle representation; the CNN would still predict

a face in the image. The implication of this process is that without a comprehensive and exten-

sive training dataset, the classification of pictures becomes inaccurate and subject to error, even in

cases involving simple tasks (Sabour, Frosst and Hinton, 2017).

Another criticism of CNNs lies in their lack of uncertainty measures. Unlike traditional mod-

els like regression, these tools do not yield quantities like standard errors that aid with inferences

or assessments of confidence. While the last layers of the CNN provide the “probabilities” of an

image belonging to a certain class, these quantities should be used with caution. Recent evidence

shows that seemingly imperceptible alterations to an image can cause drastic changes in the out-

come probabilities (Nguyen, Yosinski and Clune, 2015). This research implies that the likelihood

for an image to be identified might depend not only on its basic features, but also on stochastic

aspects, such as its illumination or the proportion of a picture it occupies.

Finally, CNNs cannot discover dimensions that humans themselves cannot identify. The afore-

mentioned limitations of this methodology should warn us about applying CNNs to discover and

measure latent dimensions in data or for the classification and scaling of abstract concepts. Recall

that some crucial parts of information that give context to a visual message, such as surroundings

and positions, get lost during the classification process. Similar to what occurs in text analysis, if

a human cannot code or validate a trait, a CNN will not be able to do it, either.

In summary, researchers need to be aware of the limitations of CNNs, cautious about the ob-

jectives they expect CNNs to fulfill, fully knowledgeable of the data under analysis and training,

and careful about their interpretation of the outputs of the CNN.

5 Conclusion

Using computer vision techniques for image-retrieval and classification can extend the scope of

the data, theory and implications of several social phenomena. In this paper we presented a com-

prehensive guide for researchers interested in using Convolutional Neural Networks for visual

25



content coding and classification. We presented the intuition behind CNNs, highlighted their po-

tential, and described their structure and implementation.

CNNs have a wide variety of applications in multiple fields of the social sciences. They can be

applied to similar data collection problems like the one outlined in the text: retrieving signatures

or the votes that were whipped for a given policy registered in historic documents, classifying

written notes, or even the extraction and interpretation of symbols. They can also be applied to

the coding of more complex political phenomena: measuring gender composition in pictures of

groups, identifying the sentiment of material from electoral campaigns, recording the activities of

crowds in a protest, counting the number of people waiting to vote in polling stations, etc. The

extraction of information from images and visual content invites a wider variety of questions.

The present article illustrated the benefits of CNNs for data collection purposes and image

classification by focusing on the recognition of handwritten tallies from the 2015 Mexican election.

It also presented some of the challenges and practical issues that researchers should consider when

dealing with this type of data. We concluded by discussing the strengths and limitations of CNNs.

The study of new data sources both complements and enhances the knowledge that we al-

ready have about the political world. However, these opportunities should be paired with a deep

understanding of the characteristics, mechanisms, and consequences of these models.
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6 Appendix

Glossary

activation function Function that allows to generate non-linear outputs. In the context of CNNs,
these are mathematical rules or functions that transform the elements of a matrix. 4

activation layer Step of the process where the activation functions are applied to the output ma-
trixes that result from the convolutions. 9

backpropagation Long series of nested equations that have the objective of adjusting each weight
in the network in proportion to how much it contributes to overall error. Backpropagation
can be seen as an application the Chain rule to find the derivatives of a function with respect
to any variable in the nested equation. 11

batch normalization Technique for improving the performance and stability of a neural network
via a normalization step that fixes the means and variances of layer inputs. The normal-
ization process occurs in “mini-batches” (e.g. subsets of the training dataset), to make the
process more efficient. This is possible given that 1) the optimized loss over a mini-batch
is an actual estimate of that in the full set whose quality improves as the size of the batch
increases, and 2) takes advantage of parallel computation. For a layer with d-dimensional

input x = (x(1) . . . x(d)), we normalize each dimension with x̂(k) = x(k)−E(x(k))√
Var(x(k))

, where the

expectation and variance are computed over the training dataset. 23

batch size Number of images in a match, or subset of training images. 12

convolution In mathematics, a convolutional operation transforms two existing functions into an
argument defining how the shape of one functions is modified by the other. The term in
computer science extends to the idea of combining the values of a neuron with those from
the different regions of the image. 7

data augmentation A technique to increase the size of the training dataset by reproducing the
original training examples with a random perturbations on the image, such as rotations,
flips, or zooms of the input. 16

Deep belief networks A series of Restricted Boltzmann Machines (RBMs, type of neural net-
works) in which the output of one RBM feeds into another one yielding a “stack” of nets.
The main input of these networks are raw pixel intensities. Unlike feedforward networks
where data only moves forward, in RBMs the connections are not directed and therefore
the information can flow in both visible-hidden and hidden-visible directions. The hidden
layers of an RBM can be used as a form of “feature vector”.. 4

epochs A training iteration consisting on the single pass of the entire training database through-
out the model. 12

feature map The matrix mapping the outputs from convolution of a given filter and the different
regions of an image. 8

filter size Product of height and width, in pixels, of a matrix representing a filter. 7
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filter stride Number of pixels that a filter slides through an image. 7

filters In a CNN, the filters represent the neurons of the network. These are matrixes of numbers
representing patterns and combinations of pixels that permit the extraction of features of
an image. The pixel combinations can represent edges, corners, blobs, color combinations,
and textures. Filters are convolved with regions of the image to create feature maps that
represent the prevalence of the patterns they represent in an image. 6

gradient descent Optimization algorithm used to to update the weights, or coefficients, of our
model. Its objective is to minimize some function by iteratively moving in the direction of
steepest descent as defined by the negative of the gradient. The gradient is built with the
partial derivatives of the function with respect to its different parameters. It is represented
by x

′
= x− ε∆xf(x). 11

layer depth Number of filters used in a layer. 7

learning rate A positive scalar that defines the magnitude of the steps in which the gradient de-
scends. Formally, the learning rate is defined as the parameter ε in the gradient descent
function (see gradient descent). 12

mini-batches Subsets of the images in the training dataset used in the batch-normalization pro-
cess. 12

neurons In the context of a Neural Network, the neuron is a mathematical function, like a sum,
that transforms an input to produce a new output. When talking about Convolutional Neu-
ral Networks, the neuron is the filter, or kernel, that convolves with different areas of the
image. 4

pooling Data reduction technique that applies a rule (e.g. keep the maximum) of a given quad-
rant of the matrix to retain the most important and salient information and improve compu-
tational efficiency and speed. 9

receptive field The area where a given filter, or neuron, is positioned to execute a convolution. 7

ReLU The name stands for REctified Linear Unit. It is the most commonly used activation func-
tion in CNNs formally defined as y = max(0, x). It is computationally cheap due to its math-
ematical simplicity, converges faster due to the linearity for positive values and its sparsely
activated given that it is zero for negative values. 9

Sigmoid Activation function defining a “S”-shaped curve, or sigmoid, formally defined as the
inverse logit: 1

1+e−x . Useful when dealing with binary outcomes/labels. The function is
differentiable and monotonic, and can cause a network to get stuck when training. 9

softmax layer A layer with a multinomial function embedded that transforms the output of the
CNN layers up to that into probabilities that the input belongs to each of the potential labels.
This is a fully-connected layer because its neurons are not independent and the output is
based on this dependency (i.e. the probabilities summing to 1). 11
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Tahn Also known as hyperbolic tangent, it is an activation function also with a sigmoidal shape
but with a range between -1 and 1. Its formal definition is 22

1+e−x implying that negative
inputs are mapped strongly negative, and zero values would be near to that value when
mapped. 9

transfer learning Exploiting a model trained in a particular setting to improve the generalization
of the findings of a different setting. This is a valuable resource when the researcher consid-
ers that the factors that explain the variations of the original database are useful for the goal
of the new database (Goodfellow, Bengio and Courville, 2016, p. 526-527). 14

weights The unknown parameters of the neural network that seek to improve the fit between the
model and the data. In CNNs the weights are the numbers contained in the feature matrixes.
4

zero-padding A padding is a “frame” that we add to the border of an image to allow the convo-
lution of the edges and corners of an image, and increase the information that is processed
through the CNN. In this case, the zero-padding adds a vector of zeros with the length of
the width of the image above and below it, and another vector of zeros with the length of
the height of the image to the left and right of it. This is equivalent to adding a black frame
of width 1 px to the image. 6

Backpropagation

Suppose that a neuron j in the last layer provides a classification outcome yj .13 To estimate the
prediction error, the model compares such an outcome with the target label, tj . In our digit recog-
nition example, the prediction error of the neuron for the outcome “1” is the difference between
the true outcome and the model’s estimated probability for the image to belong to that category.
After adding up the prediction error of all the neurons in the layer, E = 1

2

∑
j∈10(tj − yj)2, we can

estimate the error function derivative of the last layer:

∂E

∂yj
= −(tj − yj) (2)

Similarly, we can express the error derivatives in terms of the logit of the neuron, zj :

∂E

∂zj
=
∂E

∂yj

∂yj
∂zj

= yj(1− yj)
∂E

∂yj
(3)

To minimize this error term, the network goes back to its prior layers and identifies those
weights contributing the most to this error. In other words, it estimates how the neuron outcomes
in layer i affect the outputs of layer j given the weighted connection between both layers, wij :

∂E

∂yi
=

∑
j

∂E

∂zj

∂zj
∂yi

=
∑
j

wij
∂E

∂zj
=

∑
j

wijyj(1− yj)
∂E

∂yj
(4)

These partial derivatives allow us to estimate the contribution of a specific weight to the error
term:

∂E

∂wij
=

∂zj
∂wij

∂E

∂zj
= yj(1− yj)

∂E

∂yi
(5)

13The explanation and notation of this example come from Buduma (2017).
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The partial derivative in Equation 5 allows the model to gradually modify its weights after
reviewing a set k of examples from the database K:

−∆wij = −
∑
k∈K

y
(k)
i y

(k)
j (1− y(k)j )

∂E(k)

∂y
(k)
i

(6)

Distribution of votes per party in District 15

Figure 12: Distribution of votes per party
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