
LEARNING TO SEE:
CONVOLUTIONAL NEURAL NETWORKS FOR THE ANALYSIS

OF SOCIAL SCIENCE DATA∗

Michelle Torres Francisco Cantú
Rice University University of Houston

smtorres@rice.edu fcantu10@uh.edu

Abstract

We provide an introduction of the functioning, implementation, and challenges of Convo-
lutional Neural Networks (CNNs) to classify visual information in social sciences. This tool
can help scholars reduce the resources necessary for the tedious task of classifying images and
extracting information from them. We illustrate the implementation and impact of this method-
ology by using two relevant examples: coding handwritten information and identifying those
elements in newspaper images that craft the tone of a particular political message. Our paper
not only demonstrates the contributions of CNNs to both scholars and policy practitioners, but
also presents the practical challenges and limitations of the method, providing advice on how
to deal with these issues.

∗We are grateful to Sarah Bouchat, Bryce Dietrich, Jonathan Homola, Chris Lucas, Jacob Montgomery and partic-
ipants of the 2018 Latin American Political Methodology Meeting and the Political Science Data Lab at Washington
University in St. Louis for their useful comments. All errors are our own. Replication materials will be available in the
websites/Github pages of the authors.

mailto:smtorres@rice.edu
mailto:fcantu10@Central.UH.EDU

1 Introduction

Over the most recent decades, computers have increasingly taken over tedious and repetitive

tasks. From counting words in a file to performing long and complex calculations, machines are

able to follow a set of instructions in a repetitive manner without fatigue or cognitive bias. Their

capacity to perform quickly and reliably allows us to analyze information from a large amount

of data, such as roll-call votes (McCarty, Poole and Rosenthal, 2006), congressional floor speeches

(Dietrich, Hayes and O’Brian, 2019; Dietrich, Enos and Sen, 2019), and social media posts (Barberá,

2015).

And yet, despite computers’ effectiveness in analyzing textual or numeric information, their

performance in classifying images was disappointing until a few years ago. In principle, we could

ask a computer to find, for example, all images of a specific political leader if we provide specific

rules describing the physical characteristics of such individual (e.g., the form of her nose, the

distance of her nose to her eyes, and the size of her forehead). But computers’ ability to follow

a set of rules when classifying an image can actually be their chief limitation. The directives we

give to a computer could be insufficient when identifying those pictures in which the individual

is not facing the camera or wearing sunglasses. In an even subtler dimension, the computer might

struggle to identify the individual if the lighting differs substantially from one picture to another.

Of course, we can provide more instructions for the computer, but the list would be as vast as the

number of ways in which an individual may appear in a picture.

To overcome those challenges, recent developments in computer science propose an alterna-

tive approach to retrieve information from images. Rather than following a set of given rules, com-

puters are now exposed to multiple examples that allow them to identify visual patterns across

images. This process, inspired by the way in which humans learn to digest visual content, allows

computers to gradually glean patterns of colors, edges, and textures across images. This learning

process allows the computer to identify and track an object under various conditions.

This paper introduces to political science the use of Convolutional Neural Networks (CNNs)

as a reliable, cost-effective way to classify pictures. In particular, we present this method as an

alternative tool for the tedious task of analyzing, coding, and classifying large-scale image col-

lections. Our main goal is to provide general guidelines on how CNNs work and to discuss the

2

challenges and problems that researchers might encounter when using this tool.

We illustrate the advantages of this methodology with two examples in which we code rele-

vant information. First, we use CNNs to code handwritten information. In particular, we code

the handwritten election results on the vote tallies for Mexico’s 2015 federal election. The low

complexity of this set of images of interest (i.e., handwritten numbers) makes this case ideal for

illustrating the structure and functioning of CNNs. It allows us to: 1) illustrate the implementa-

tion of the CNNs in an intuitive and reliable way, and 2) conduct an objective test of the perfor-

mance of CNNs. The application may be of interest to recent works collecting archive data with,

for example, military (Huff, 2018), demographic (Lladós et al., 2007; Coüasnon, Camillerapp and

Leplumey, 2007), or electoral information (Homola, 2018; Cantú, 2018).

The second example highlights the applicability of CNNs to the analysis of the framing of

political events using images. Analyzing image content in this fashion can expand research on

topics like the visual tone of campaign coverage (Lawson and McCann, 2004; Druckman and

Parkin, 2005), the portrayals of protests (Webb Williams, Casas and Wilkerson, Forthcoming;

Torres, 2018; Won, Steinert-Threlkeld and Joo, 2017; Wuhs, 2014; Zhang and Pan, 2019), and the

camera-recorded interactions between police officers and citizens (Makin et al., Forthcoming). For

our example, we collected the front pages of 450 U.S. newspapers in the aftermath of the El Paso

shooting on August 3, 2019, and study the different visual frames used to communicate gun-

violence-related news. This exercise shows that, when reporting the same event, newspapers are

more likely to show pictures with heavily armed police in states where gun popularity is high,

and vice versa in states where such popularity is low.

While our hope is to encourage scholars to use the methodology, we also want to stress its lim-

itations. A valid concern regarding CNNs stems from their opacity for linking the inputs and the

model outputs (Nguyen, Yosinski and Clune, 2015; Sabour, Frosst and Hinton, 2017; Zeiler and

Fergus, 2014). Such warning should deter scholars from applying this method to identify latent

dimensions or ambiguous features in the data. We emphasize the importance of establishing trans-

parent goals when using the model, restricting its application to tasks that could be performed, in

principle, by a human, and avoid post-hoc interpretations of the outcomes (Lipton, 2016).

We also acknowledge that the method includes plenty of jargon. While some of these names

have to do with exclusive concepts from computer science, many of them have an equivalent label

3

that is familiar to most political scientists. The article thus translates some of the terms applicable

to CNNs into concepts known to social scientists. The Appendix includes a glossary of these

terms, which we identify with italics in the text.

The manuscript is organized as follows. First, we introduce what CNNs are and explain each

stage in the process. Next, we list a few recommendations when applying these tools, as well

as discuss the limitations of CNNs for certain measurement and classification tasks. Then, we

illustrate the practicability of this tool for the two examples described above. We conclude by

suggesting potential ways to expand the use of visual analysis in social science.

2 A Primer on Convolutional Neural Networks (CNNs)

Figure 1: Example of a Convolutional Neural Network Structure

Input:
13 x 13

Feature
map:
 8 @
5 X 5

Hidden
units:
 128

Outputs:
 10

Fully connected
neural network

1
0

2

3

4
5

6

7

8
9

1 0 0
0 1 0
0 0 1

Filters:
8 @ 3 x 3

0 0 0 0 0
0 0.6 1 0 0
0 0 1.5 0 0
0 0 2.2 0 0
0 0 0.3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.6 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0.6 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0.6 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0.3 1 0.5 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0.5 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0.8 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0.8 1 0.2 0 0 0 0 0 0
0 0 0 0 0 0 0.3 1 0.2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0.537 0.761 0 0

0 0 0.905 0 0

0 0 0.976 0 0

0 0 0.291 0 0

0.537 0.761 0.761 0

0.537 0.905 0.905 0

0 0.976 0.976 0

0 0.976 0.976 0

Zero padding (Figure 2) Convolution (Figure 4)
Non-linear
activation
(Figure 6)

Pooling
(Figure 6)

Activation
layer:
Tanh

Pooling
layer:
 max

FEATURE EXTRACTION CLASSIFICATIONPRE-PROCESSING

Figure 1 illustrates the basic architecture of a CNN. It is organized into layers, or sets of neurons

representing specific visual features that can be found in an image such as edges, blobs, textures or

colors. Each neuron convolves with sub-regions of the original image to search for similar visual

patterns. This structure addresses the complexity of representing simple objects by reducing the

4

high dimensionality of images. Thus, instead of attributing meaning to raw pixel intensities, the

CNN summarizes the content of an image by using informative features and patterns that are

learned throughout the process.

The functionality of CNNs can be divided into three stages. First, the pre-processing stage

transforms the image into a format that can be read by the computer. Next, the feature extraction

stage deconstructs the image into multiple visual components, each representing a specific visual

feature. Finally, the learning and classification stage uses the image’s components to categotize

the image into one of the available categories. Each stage requires the researcher to specify a few

hyperparameters to define the structure of the network and the training process. We explain below

the logic behind each stage and the corresponding decisions available to the researcher.

2.1 Image Pre-Processing

We begin by preparing the raw data for the analysis, making sure that images share the same

shape, size, and contrast range. In other words, this pre-processing step transforms all files so

they have the same arrangement of pixels. When the images vary in size or orientation, a standard

practice is to convert all images into squares of the same size. It can be done by squashing the

image’s largest side, adding black bordering to its shortest one, or center-cropping it. The latter

is the most common practice because it also reduces the number of pixels that the model will

process, leading to faster learning.

We also scale the pixel values to make sure the model will not be biased towards images with

large-value pixels. A common scaling approach constrains the pixels to the [0, 1] range after di-

viding the raw values by 255, the largest possible pixel value. Additionally, we can divide the

difference between each pixel and the mean pixel value in the image by the standard deviation

of the pixel values in the data. This operation normalizes the pixel values to have a mean of zero

and a variance of one. Depending on the data, color images can also be transformed to grayscale

to reduce their dimensionality.

Once the images share the same specifications, we need to transform them in a format that the

computer can understand. This process involves representing each image as a numerical array,

where each entry depicts a specific pixel value. Figure 2(a), for example, illustrates how a 13

5

(height) × 13 (width) pixels picture showing a handwritten “1” can be transformed into a matrix

of 13 × 13 = 169 units, each of them specifying the light intensity of a specific pixel.1 In the case

of a color image, the transformation would produce three matrices of the same size, one for each

primary color channel (red, green, and blue) in which the values in each cell represent the intensity

of the corresponding color.

The resulting input matrix is the core unit of analysis. The goal of the CNN is to extract the

most relevant information from this matrix while gradually reducing its dimensionality. However,

the way in which CNNs extract the information tends to downplay the features along the edges of

the image. We prevent this problem by applying zero-padding, or appending a perimeter of zeros

to the input matrix. The example in Figure 2(b) shows a zero padding of p = 1, increasing the size

of the numerical array to 15× 15.

Figure 2: Image Pre-processing of a handwritten “1”

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 .6 1 0 0 0 0 0 0
0 0 0 0 .6 1 0 0 0 0 0 0
0 0 0 0 .3 1 .5 0 0 0 0 0
0 0 0 0 0 1 .5 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 .8 .8 1 0 0 0 0 0
0 0 0 0 0 .8 1 .2 0 0 0 0
0 0 0 0 0 .3 1 .2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 .6 1 0 0 0 0 0 0

0

0
0
0
0
0
0
0
0
0

0
0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 .6 1 0 0 0 0 0 0
0 0 0 0 .6 1 0 0 0 0 0 0
0 0 0 0 .3 1 .5 0 0 0 0 0
0 0 0 0 0 1 .5 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 .8 .8 1 0 0 0 0 0
0 0 0 0 0 .8 1 .2 0 0 0 0
0 0 0 0 0 .3 1 .2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 .6 1 0 0 0 0 0 0

0

0
0
0
0
0
0
0
0
0

0
0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0

0
0
0
0
0
0
0
0
0

0
0

0
0

0
0

0
0
0
0
0
0
0
0
0

0
0

0
0

0

(a) Image Transformation (b) Zero Padding

Finally, we dispatch all of the images in our database into three subsets: 1) one that will fit the

model, 2) another one that will evaluate its performance, and 3) a final one that will be labeled after

training the model. In other words, we work with three datasets: train, validation, and test data.

The train data include those examples that the model uses to learn the patterns corresponding

1The concept of “amount of light” might seem counterintuitive when expressed in mathematical form: In practice,
a value of “0” corresponds to a black pixel, while “255” represents a white pixel. To avoid confusion and only for
illustrative purposes, we take higher numbers in the matrixes presented as higher concentrations of “ink”. Therefore,
higher numbers correspond to darker pixels.

6

to each outcome category. The validation dataset includes those examples that help us check the

generalizability of the model’s predictions. The model is only allowed to observe and predict

the labels of the validity data, but it is not allowed to learn from it. Finally, the test set includes

data from unlabeled examples and is never used during the training stage. The whole point of a

supervised learning is to train a model that helps us label the examples in the test set.

To assign the images to the train and validity subsets, we can employ k-fold cross validation,

which randomly assigns the images into k groups, or folds. The first fold is for validation and

the k − 1 remaining folds for training. The process is repeated k times, each of them using a

different fold for validation and training on the rest of the images. Every iteration is independent,

so learning is not transferred across iterations (Hastie, Tibshirani and Friedman, 2009, 242-245).

A common rule of thumb is to randomly split the database into 70% for training and validation

and 30% for testing (Elkan, 2012). However, the ratio can be adjusted to the specific problem under

consideration. Models with just a few hyperparameters are faster to train and may not require a

very large training set. Similarly, a huge database makes it possible to train the model using

a smaller share of images. When labeling the data implies a very difficult, time-consuming, or

expensive task, we can use pre-trained models and then “curate” the training examples that the

CNN will see according to our specific research objectives. This process is called active learning,

and we describe it on Section 3.

2.2 Feature Extraction

The second stage of the CNN decomposes the image into single components. This process consists

of calculating the dot product of sub-regions of the input matrix with a set of smaller matrices,

called filters, each representing a particular visual feature. The filters in the first layer include

basic representations of features, such as straight lines (see Figure 3 as an illustration). Subsequent

layers build up on those features and transition to more complex features, from lines to contours,

to shapes, and to objects (Buduma and Locascio, 2017). The more layers a CNN has, the more

complex features of the image it will recognize (Qin et al., 2018).

Within each layer, filters slide across the width and height of the input matrix, computing the

dot product of the filter and a particular image’s area. This dot product is the convolution part

7

Figure 3: Examples of filters

Note: This figure displays examples of filters of size 3 (height)× 3(width) = 9 that were randomly initialized in the first
layer of a CNN.

of the CNN. The output of this operation is a new matrix called receptive field. Intuitively, this

convolution represents a measure of how well a given filter “matches” a region of the image. The

entries in each filter matrix can be understood as the pixel intensities that altogether form relevant

or informative patterns. We are interested in learning the relevant pixel combinations associated

with our outcome labels, just as we want to learn the importance of coefficients in a regression

model. Thus, a convolutional layer is a collection of filters extracting different information from

the same input matrix.

To describe in detail how convolution works, we need to specify three hyperparameters for this

operation. First, the filter size is the product of the filter’s width and height. For example, Figure

3 presents simplified examples of filters of size 9. This parameter sets out the type of features

identified during the convolution. Small filters capture fine-grained details, but they are likely to

mix up the relevant information from an image with its noise. On the other hand, large filters look

for details of a larger size at the cost of a lower specificity. Second, the filter stride is an integer

number defining how many pixels the filter will slide through the image. The smaller the stride,

the more information from the image that is preserved during the convolution.2 Finally, the layer

depth defines the number of filters, or features to be searched for in the layer. Figure 3, for instance,

represents the filters of a layer with depth 12.

We illustrate how a convolution process works in Figure 4. In this example, we take the top-left

filter displayed in Figure 3 and use a stride of 3. The convolution process then involves computing

the dot products of the filter and the values of every equivalent pixel space in the image. In this

example, the dot product between the entries of the filter and the input of the highlighted image

area is 2.2. The filter then slides three steps to the right and computes again the dot product of

2For a comparison of model performances using different strides and filter size, see Simonyan and Zisserman (2014).

8

its entries. The result of this operation is the feature map at the right of Figure 4, which shows

the image regions with the largest dot products for this filter. The convolution process will create

as many feature maps as filters specified in the layer depth, and the size of each feature map is

defined by:

feature map size =
(input width× input length)− filter size + (2× zero padding)

stride + 1
(1)

Figure 4: Illustration of the Convolution Stage

1 0 0
0 1 0
0 0 1

1 x 1 = 1 0 x 1 = 0 0 x 0 = 0

0 x .8 = 0 1 x 1 = 1 0 x 0 = 0

0 x .8 = 0 0 x 1 = 0 1 x .2 = .2

0 0 0 0 0

0 0.6 1 0 0

0 0 1.5 0 0

0 0 2.2 0 0

0 0 0.3 0 0

Feature mapInput matrix Filter

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 .6 1 0 0 0 0 0 0
0 0 0 0 .6 1 0 0 0 0 0 0
0 0 0 0 .3 1 .5 0 0 0 0 0
0 0 0 0 0 1 .5 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 .8 .8 1 0 0 0 0 0
0 0 0 0 0 .8 1 .2 0 0 0 0
0 0 0 0 0 .3 1 .2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 .6 1 0 0 0 0 0 0

0

0
0
0
0
0
0
0
0
0

0
0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0

0
0
0
0
0
0
0
0
0

0
0

0
0

0
0

0
0
0
0
0
0
0
0
0

0
0

0
0

0

Since the resulting feature map is a linear transformation of the input matrix, adding more

convolutional layers at this point would be redundant; the result could be obtained with a single

linear product. Such feature maps are unlikely to produce smooth gradients, a necessary input

for the learning phase described in Section 2.3. To address this problem, it is necessary to include

an activation layer. This layer applies a non-linear transformation to the feature maps before being

sent to the next convolution layer. The non-linearity property allows CNNs to stack multiple

layers and extract more information from the image.

The specific transformation of the input depends on the activation function of the neuron. Figure

9

5 shows three examples of these functions. The first one, Sigmoid, is simply the inverse of the

logistic function. As the figure shows, this function bounds the activation values to the [0, 1]

range. The second activation function is Tahn, a linear transformation of Sigmoid that zero-centers

the outputs and bounds them to the [−1, 1] interval.3 A limitation of both functions is that their

output becomes flat near their boundaries, limiting the network to learn from inputs with either

very low or very high activation values. Addressing these issues, the Rectified Linear Unit (ReLU)

is a non-saturated function that keeps the original input value when it is positive and transforms

all negative values to 0. ReLU usually increases the learning speed of the network and is now the

standard activation function in practice (Nair and Hinton, 2010).

Figure 5: Examples of Activation Functions

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

S
ig

m
oi

d(
x)

−4 −2 0 2 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

Ta
nh

(x
)

−4 −2 0 2 4

0
1

2
3

4
5

x

R
eL

U
(x

)

(a) Sigmoid(x) = 1
1+e−x (b) Tanh(x) = 2

1+e−2x (c)ReLU(x) =

{
0 if x < 0,

x otherwise.

The following step reduces the dimensionality of the activation map by using a pooling layer.

A pooling layer shrinks the size of the matrix while keeping the most important information in

the feature map. The information of a submatrix is summarized differently depending on the type

of pooling layer applied. For example, it can get the largest value (max pooling), the smallest value

(min pooling), or the average value (mean pooling) of a specific pixel area. In the example of Figure

6, we apply max-pooling to keep the largest value from every 2x2 pixel area of the matrix. The

resultant matrix generalizes the properties of the image, forcing the CNNs to pay more attention

to whether a feature fits in the image regardless of the location of such a feature.

The process is repeated for each of the filters in the first layer. The resultant feature maps then

3For illustration purposes, we use Tahn for our example in Figure 6.

10

Figure 6: Illustration of the non-linear activation and pooling

0 0 0 0 0

0 0.6 1 0 0

0 0 1.5 0 0

0 0 2.2 0 0

0 0 0.3 0 0

0 0 0 0 0

0 0.537 0.761 0 0

0 0 0.905 0 0

0 0 0.976 0 0

0 0 0.291 0 0

0.537 0.761 0.761 0

0.537 0.905 0.905 0

0 0.976 0.976 0

0 0.976 0.976 0

Non-linear
activation:

Tanh(x)
max pooling

become the input for the second convolutional layer. This new convolutional layer repeats all of

the steps described above, where the new filters slide through the feature maps to now look for

more complex features, such as a combination of lines or edges. The more layers we include in the

network, the more complex features it is able to extract and learn from the images.

2.3 Learning

The last stage of the CNN uses the elements extracted during the convolution to predict the label

of the image. Such prediction is performed by a neural network, which consists of a set of inter-

related neurons. Neurons here are also organized into layers. The input layer receives the features

extracted during the convolution. The output layer produces the output values. Any layer in-

between the input and output layers is called a hidden layer.

Similar to the feature extraction stage, each neuron receives an input, transforms it, and sends

a signal to other neuron. The strength of the signal depends on the weight between the emitting

and receiving neurons. Positive weights amplify the signals and highlight their contribution to

the output. By contrast, negative weights weaken the signal to which they are attached.

When the information reaches the output layer, the nodes deliver the probability that the orig-

inal input belongs to each specific label. If the classification task is only between two labels, the

output layer estimates the probabilities using an inverse logit. Otherwise, the probabilities are

estimated through a softmax layer layer, the equivalent of a multinomial logistic function. In the

example described above, since we want to identify the image from Figure 2(a) as a digit value,

the last layer of our network has 10 neurons or outputs, one for every digit from 0 to 9. Each

neuron will provide a probability that the image belongs to each digit, and the CNN will attach

the label with the highest estimated probability.

11

So far, the model has performed only a forward propagation—i.e., passing the input data se-

quentially through the hidden layers to the output layer to generate a prediction. However, for

the model to learn what features of the image are more likely to belong to each label, it requires

a process called backpropagation (Rumelhart, Hinton and Williams, 1988). In this case, the model

goes back throughout the hidden layers towards the input layer. With every step away from the

output layer, the model calibrates the weights between neurons to gradually minimize the errors

in predictions (Schrodt, 2004; Lucas, 2018a). Therefore, the learning process for a CNN consists

in reviewing a set of labeled examples multiple times to find the optimal combination of feature

maps and weights that minimize the disparities between true and predicted labels.

Analytically, backpropagation searches for the local points in a high-dimensional space where

the error derivative of the total error function is zero. To find those saddle points, the CNN modi-

fies the weights between layers and checks for its resulting changes on the error. This estimation is

called gradient descent and consists of repeatedly calculating the slope of each weight with respect

to the loss function and modifying such weight to minimize the slope until finally reaching the

bottom of the function.4

While these repeated estimations can be automatically calculated, we need to specify a few

hyperparameters of the operation. First, it is necessary to define the number of epochs, or the

number of times that all training examples pass through the network. Given the iterative nature

of the gradient descent, the network is more likely to fit its weights as it has more opportunities

to review the examples of the train data. It is expected that the train and validity loss i.e., the

prediction errors in the train and validity data will decrease with the number of epochs. When the

validity loss stops decreasing, we should stop the training process to avoid overfitting or allowing

the model to “memorize” the training images without making generalizable predictions.5

Second, we need to define the batch size, which is the number of training images that need to

pass through the network before tuning-up its weights. It is possible to set the batch size to the

total number of training images so the model would update its weights once per epoch. However,

this modality requires accumulating the prediction errors across all of the images in the training

set, a task that can demand a lot of computational memory. It also produces a static error surface,

4A more technical description of the backpropagation process is included in the Glossary.
5See Subsection 3.2 for a few recommendations on how to delay this issue during the training phase.

12

where the gradient descent is likely to get stuck in a local minimum. Alternatively, we can set the

batch size to one, where the model updates its weights for each training example. Though updat-

ing the model with every example decreases the risk of getting stuck on a flat region, it produces a

very noisy signal. The sweet spot between both extremes splits the training data into mini-batches,

allowing the model to update its parameters several times during an epoch. A common approach

is to set the batch size to 32 (Bengio, 2012; Masters and Luschi, 2018). The number of mini-batches

in our database multiplied by the number of epochs tells us the number of iteration, or how many

times the gradient was updated during the training phase.

Finally, we need to set the learning rate, or the speed at which the gradient descent travels along

the downward slope. This rate specifies the degree to which the CNN will update its weights af-

ter every iteration. A large learning rate will produce large-scale updates on the network weights,

jumping around the function and overshooting its minimum. By contrast, a very small learning

rate is more likely to find a local minimum, but it will take a long time to converge. A good

practice is to start with a large learning rate and gradually decrease it at every given number

of iterations (Buduma, 2017). This strategy allows the gradient to start exploring across the en-

tire hyper-parameter space and gradually make smaller jumps to approach the global minimum.

There is a variety of optimizers that adaptively tune the learning rates for all parameters in the

model.6

2.4 Transfer learning

Training the model from scratch can be computationally expensive and requires a large dataset

to avoid overfitting. An alternative approach involves transfer learning, where an already trained

model can be directly applied to a new task or used as the starting point for training a new model

(Pan et al., 2010). Social scientists have taken advantage of the benefits of transfer learning. This

technique then repurposes the information learned by a model for a different yet related goal.

How much information we can transfer between models depends on the size of our pool of im-

ages, as well as on how similar our data and classification tasks are to those of the base model. If

the researcher is lucky enough to find a CNN already trained on a dataset with similar content to

6For a very helpful comparison of the most common optimizers, see Karpathy, Andrej. 2019. “CS231n Convolutional
Neural Networks for Visual Recognition.” https://cs231n.github.io/neural-networks-3/ (March 30, 2019).

13

https://cs231n.github.io/neural-networks-3/

hers, and that also performs a similar classification task, she can retrain the model by “freezing”

all but the last layers of the network. When we freeze a layer it becomes inactive; the new input

images do not go through it. This process allows the new model not only to find the more generic

features of the images in an easier way by using what it learned from the original training process,

but also to focus its training on the more specific details of the new target categories. As the over-

lap between the datasets decreases, it is advised to extend the backpropagation to earlier layers.

For example, Zhang and Pan (2019) used transfer learning to fine tune a CNN that allows them to

identify collective action events. Their base model was a VGGNet, a CNN trained on a set of 1.2

million images classified into 1,000 categories (mostly common objects). Because those categories

do not cover human faces or crowds, crucial elements of protests and demonstrations, the authors

“froze” the first 12 layers of a VGGNet and fine-tuned and re-trained the last 4 with a set of images

containing their target elements. After this, the new, modified net was able to find the probability

that a given image depicts a protest. See Webb Williams, Casas and Wilkerson (Forthcoming) for a

detailed explanation on the method, as well as the resources available when using this approach.

3 Recommendations and warnings

3.1 Software

There are multiple open-source machine learning packages that researchers can use to design and

run a Convolutional Neural Network. Some of the most popular are TensorFlow (from Google),

Caffe (from UC Berkeley), CNTK (from Microsoft), PyTorch (from Facebook), and MXNet (supported

by AWS). Keras is a neural networks API written in Python that supports models like CNNs

and recurrent networks and allows a very accessible, efficient and user-friendly interaction with

packages like TensorFlow.

The differences between the aforementioned packages are in terms of speed, energy efficiency,

and accessibility. As a quick summary, TensorFlow is faster when running large-scale models,

while Caffe is faster with small-scale ones (assuming they are both implemented on a CPU-based

platform). Further, while PyTorch is more memory efficient than its counterparts, MXNet requires

the least amount of computational energy. Thus, scholars should consider the size and complexity

of their data and classification objectives, plus the hardware/computational resources they have at

14

hand. Zhang, Wang and Shi (2018) offer a great compilation of insights regarding the performance

of these packages with respect to speed, memory and energy.

In particular, for simpler cases with smaller datasets, we opt to use Keras (see Application 1

below). It is not only designed to enable fast, small-scale experimentation, but given its popularity,

there are also several resources and support materials online to guide its use. However, if the tasks

are more demanding and larger datasets are under analysis, then TensorFlow and PyTorch are

preferred alternatives (see Application 2 below). While the former offers great functionality and

is particular useful in object detection tasks, the latter offers shorter training durations and easier

ways of debugging.7

Beyond these packages, there are other tools that facilitate the design of the architecture of

a CNN and also allow researchers to take advantage of pre-trained models. In particular, these

might be interesting for deep learning beginners or scholars with less advanced programming

skills. The options include but are not limited to Amazon AWS Machine Learning Training, Google

Cloud AutoML or Google Cloud Machine Learning Engine. For a review of these platforms and their

performance, see Webb Williams (2019).

3.2 Finding the training ‘sweet spot’

As with any human-performed task, prediction accuracy for a CNN model comes only with prac-

tice. Every time an image passes through the network, the model reduces its classification error by

calibrating the importance it gives to each filter. The more opportunities for the model to review

an image, the more accurate it becomes at classifying the examples in the training set. However,

training the model for too many iterations will eventually lead to overfitting: a decreased ability

of the model to make generalizable predictions outside the training data. We suggest four ways

to prevent overfitting while training the model.

Grid search your model hyperparameters As mentioned several times above, the specific hy-

perparameters of the model depend on the data and classification goal. The challenge when look-

ing for these specifications is that the values of a feature, say the number of layers in the model,

7Sayantini. 2019. “Keras vs TensorFlow vs PyTorch : Comparison of the Deep Learning Frameworks.” https:

//www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/ (September 22, 2019).

15

https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/

might depend on the values of other features, such as the number of filters in the layers or the

learning rate. A way to approach this problem involves using a grid search. This technique runs

the model in a for loop, compiling it with a different set of hyperparameters in each iteration. The

results allows the researcher to compare the performance of multiple settings and to choose the

configuration with the lowest loss.8

Increase the number of training images Having a larger training set allows the model to focus

not on the random fluctuations of a few examples, but rather on the visual features that appear

repeatedly across the images. In other words, increasing the numbers of training examples forces

the model to look for patterns that are more likely to appear in the test set.

Data augmentation This suggestion is helpful when we cannot collect new training examples. It

produces random variations of the original training images by, for example, flipping, flopping, ro-

tating, zooming out, or combining all of these alternatives (Chatfield et al., 2014). The augmented

cases will force the model to pay less attention to the specific location and orientation of a feature

on an image and instead grasp its relationship to other image features.

Dropout As its name suggests, this technique “drops out” a random set of neuron activations

before being transferred to the next layer (Srivastava et al., 2014). By ignoring some information

units during a forward or backward pass, we increase the opportunities for the model to learn

more robust features that activate multiple neurons. Dropout also expands the number of training

iterations required to overfit the model.

3.3 Optimize your training set

A better learning depends not only on the number of times the model can learn from the examples,

but also on the information it can extract from them. We suggest three things to keep in mind when

choosing the amount and quantity of data that the model will learn from.

Active learning We recommend picking the most useful instances of each class to train the

model (Settles, 2009). This suggestion is particularly convenient when obtaining additional train-

8See Webb Williams, Casas and Wilkerson (Forthcoming) for a detailed discussion of how this technique works.

16

ing examples is a difficult, time-consuming, or expensive task. Selecting those examples should be

based on two goals: informativeness (i.e., how much the instances help the classifier to improve its

performance) and representativeness (i.e., how well the instances represent the overall input pat-

terns of the entire dataset). Both are rarely achieved simultaneously, and researchers must often

choose which one to prioritize at the cost of the other (Huang, Jin and Zhou, 2014).

Class balance It is also useful to make sure that all classes in the training set are represented

by a similar number of examples (Buda, Maki and Mazurowski, 2018). Class balance prevents

the skewing the model’s predictions toward the label with more training instances (Japkowicz

and Stepehn, 2002). This is a recurrent issue in situations where the positive cases represent a

minority of all the cases, such as locating oil-spills (Kubat, Holte and Matwin, 1998) or identifying

fraudulent bank operations (Chan and Stolf, 1998).

Image cleaning Another risk when training a model is that it may learn visual features that are

alien to those defining the categories of interest (e.g., ink stains that are not relevant to the content

of a document). As described above, images should be pre-processed to make sure they appear as

similar as possible. In some cases, this step may require modifying and cropping irrelevant parts

of the image.

It is also possible to homogenize the data of every training batch. In this case, batch normaliza-

tion transforms the outputs of the convolutional layers to parameters with zero mean/unit vari-

ance, allowing the layer activations to be appropriately handled by any optimization method (Ioffe

and Szagedy, 2015). This technique keeps the network from focusing on outlying activations that

decelerate its learning.

3.4 Validate and check the results

Similar to textual analysis, a key principle of machine-coded visual analysis is “validate, validate,

validate” (Grimmer and Stewart, 2013, p. 269). Validating the results will reveal potential sources

of errors and provide information about the model fit. An insightful way to improve the model is

to review the misclassified images in the validity set. As we will show in the examples below, this

is a helpful practice to find potential problems in the model. Another way to check the validity

17

of the model’s predictions is to visualize the most relevant features driving the predictions (Zeiler

and Fergus, 2014; Won, Steinert-Threlkeld and Joo, 2017). Similar to finding the most important

coefficients in a regression, this exercise provides information about the the mechanisms behind

the predictions. For example, some of these tools provide “maps” that reveal what parts of the

image or specific features were most determinant in reaching a prediction and would then provide

the researcher with information to complement or tune the samples included in the training pool.

4 A warning note: The limits of CNNs

Just like any other method or tool designed to predict outcomes, CNNs face challenges and lim-

itations. In some cases, these roadblocks require additional steps to ensure the quality of results.

In other cases, they demonstrate the limits of CNNs when it comes to performing complex tasks.

In this section we discuss some of the shortcomings of CNNs with respect to their scope, inter-

pretability and validation.

Throughout this article, we present the functioning and components of CNNs, as well as an

illustration of their applicability to data collection for social science purposes. The examples below

illustrate the usefulness of CNN to extract information from large pools of images in an efficient,

fast, and reliable way. At the same time, these examples also acknowledge the limitations of CNNs

when it comes to completing certain tasks. Below we mention some of the most important flaws

for CNNs that researchers must keep in mind when solving complex tasks with this tool.

First, CNNs do not account for the orientation of objects in a picture. Ideally, we would like

CNNs to identify an object regardless of its size or rotation. However, CNNs focus only on rout-

ing the pixel information throughout the layers without adding any information about the relative

position of the extracted features. As a result, a CNN would identify a face when it finds features

associated with an eye, a nose, and a mouth, ignoring whether the eyes are below the nose and

above the mouth, for example. Without a comprehensive and extensive training dataset, the clas-

sification of pictures becomes inaccurate and subject to error, even in cases involving simple tasks

(Sabour, Frosst and Hinton, 2017).

Another criticism of CNNs lies in their lack of uncertainty measures. Unlike traditional models

such as regression, these tools do not yield quantities like standard errors that aid with inferences

18

or assessments of confidence. While the last layers of the CNN provide the “probabilities” of an

image belonging to a certain class, these quantities should be used with caution. Recent evidence

shows that seemingly imperceptible alterations to an image can cause drastic changes in the out-

come probabilities (Nguyen, Yosinski and Clune, 2015). This research implies that the likelihood

for an image to be identified might depend not only on its basic features, but also on stochastic

aspects, such as its illumination or the proportion of a picture it occupies.

Finally, CNNs cannot discover dimensions that humans themselves cannot identify or that are

subject to interpretation. The aforementioned limitations of this methodology should warn us

about applying CNNs to discover and measure latent dimensions in data or for the classification

and scaling of abstract concepts. Recall that some crucial parts of information that give context to

a visual message, such as surroundings and positions, get lost during the classification process.

Other visual messages are filtered through cognitive biases, experiences and backgrounds of the

person consuming them. For example, it is hard to reach high levels of accuracy when classifying

images according to the emotions they trigger or evoke (Casas and Webb Williams, 2019).

Similar to what occurs in text analysis, if a human cannot code or validate a trait, a CNN will

not be able to do it, either. The first application on the registration of vote counts shows that

mistakes happen even when we deal with data with low complexity, such as numbers. However,

assessing the errors and identifying their source is easier given the factual nature of the data. Thus,

abstract concepts or latent traits offer a hard case not only for the actual classification process, but

also for the post-classification analysis and validation of the results.

5 Applications

We illustrate the usefulness of a CNN with two relevant applications in political science. The first

one codes handwritten vote results from election tallies. This example allows us to discuss the

advantages and challenges of analyzing handwritten information. The second example focuses

on classifying newspaper pictures according to their visual elements. In this case, a CNN can help

us identify the different types of messages that an image can convey.

19

5.1 Coding Electoral Results from Vote Tallies

Our first application of the CNNs codes handwritten information. This type of information is a

common data source to scholars, and it includes archival data, signatures, annotations, and vote

counts. For example, Huff (2018) uses the military archives of Ireland to identify individuals who

participated in the 1916 Easter Rising in that country by looking at handwritten entries in the ap-

plications for military pensions; Lladós et al. (2007) and Coüasnon, Camillerapp and Leplumey

(2007) build datasets with personal records extracted from historical registers of births and mar-

riages, and Taylor (2008) reviews personal notes and hand-written letters from African-American

women to understand the factors that shaped their lives and legacies.

In our case, we apply CNNs to code the vote results for Mexico’s 2015 federal election. This

example demonstrates the benefits of visual analysis not only to scholars, but also to policy prac-

titioners and election officials looking for a cost-efficient way to speed up the vote tabulation

process, not to mention to increase the transparency of it. In the case of Mexico, capturing vote

results with a CNN approach may significantly decrease accidental errors when adding up the

votes, which actually occurs in almost 40% of the tallies in the country (Challú, Seira and Simpser,

2018). Moreover, this technology can shorten the time between the closing of the polls and the

announcement of the results, a period of distress for candidates and voters in elections across the

world.9 We thus propose this tool as a way to increase not only the efficiency of the vote count, but

also citizens’ trust in the impartiality of the process (Atkeson and Saunders, 2008; Bowler et al.,

2015; Pastor, 1999).

We select this case as a running example, given the simplicity of the data. The handwritten

numbers have one color channel and a low number of features and variations. These factors

allow us to represent the pixel intensities on the matrix in a straightforward way and track them

throughout the pre-processing and different layers of the CNN (as shown in Figures 1, 2, 4, and 6).

Moreover, the outcome labels are not sensitive to subjective interpretation; that is, we expect that

9See, for example, (National Public Radio, “Four Days Later, Florida Declares For Obama.” November 10, 2012.
(http://www.npr.org/sections/thetwo-way/2012/11/10/164859656/florida-finishes-counting-obama-wins);
BBC, “Haiti starts counting votes in long-delayed election.” November 21, 2016. (http://www.bbc.com/news/
world-latin-america-38042585); Clarín, “Elecciones PASO 2017: Cristina Kirchner denunciará la “trampa elec-
toral” del Gobierno y apuntará a todos los votos peronistas.” August 14, 2017. (https://www.clarin.com/politica/
elecciones-paso-2017-cristina-kirchner-denunciara-trampa-electoral-gobierno-apuntara-votos-peronistas_

0_SJghMNJ_Z.html).

20

http://www.npr.org/sections/thetwo-way/2012/11/10/164859656/florida-finishes-counting-obama-wins
http://www.bbc.com/news/world-latin-america-38042585
http://www.bbc.com/news/world-latin-america-38042585
https://www.clarin.com/politica/elecciones-paso-2017-cristina-kirchner-denunciara-trampa-electoral-gobierno-apuntara-votos-peronistas_0_SJghMNJ_Z.html
https://www.clarin.com/politica/elecciones-paso-2017-cristina-kirchner-denunciara-trampa-electoral-gobierno-apuntara-votos-peronistas_0_SJghMNJ_Z.html
https://www.clarin.com/politica/elecciones-paso-2017-cristina-kirchner-denunciara-trampa-electoral-gobierno-apuntara-votos-peronistas_0_SJghMNJ_Z.html

an “8” would always be classified as such regardless of the coder (except in those cases where the

particular handwriting style complicates the reading of a digit). The objective nature of the data

allows us to evaluate the performance of the CNN in a rigorous way.

Figure 7 shows an example of one of the tallies under analysis.10 The first step involves ex-

tracting the handwritten numbers from the tally. Because the alignment, definition and orientation

might differ from image to image, we decided to develop a function that identifies the coordinates

of three focal points of the tally that will in turn allow us to extract the table with the vote counts

and subsequently “cut” the individual numbers from it.11

Figure 7: Example of the image of a tally

Figure 12 in the Appendix summarizes the architecture of the CNN that we use for the task

of classifying each number. The network consists of two convolutional layers of 8 and 16 filters,

respectively. Each convolutional layer is followed by a ReLU activation layer and a pooling layer.

The convolutional outputs are sent to two fully connected layers and a terminal softmax.

We apply transfer learning using data from the Modified National Institute of Standards and

Technology’s (MNIST) database of handwritten digits (LeCun et al., 1989). This is one of the

10For the purposes of our example, we show only the center panel of the full tally. The original full tally contains a
horizontal panel composed of three sheets: the first one with information about the polling station, the second one with
the tabulation of the votes per party, and the third one with relevant signatures from party representatives and polling
station authorities.

11We provide more information about this process in the Appendix.

21

seminal databases on visual recognition, and it includes a training set of 70,000 examples of digits

written by about 250 writers. The digits in the MNIST dataset are centered white digits on plain

black backgrounds, without stains, blobs, or inconsistencies. We therefore train our model using

the MNIST data and use the fitted model as a baseline for a second training process using our own

database. We freeze the first convolutional layer, as explained in Section 2.4, and allow training

for the rest of the components in the network. This re-training will allow our model to adapt

the estimates (or weights) from the model trained on MNIST to our noisier data examples, which

are surrounded by stains, guiding boxes and pencil marks. Our new training sample for the

subsequent layers of the model consists of 26,271 labeled digits from our tallies, plus a validation

sample of 2,616 digits.

The accuracy of this new model on the validation dataset with actual digits from the tallies is

96.46%. Figure 8 shows the classification that we perform of some of the digits in certain tallies

with the CNN. While the CNN reaches accurate predictions for most of the numbers, it makes a

few mistakes implausible to be human-based. In most cases, however, the errors are due to an

inaccurate registration of the official results on the tallies. For example, the right panel of Figure

8 demonstrates that numbers written outside the guiding box are likely to be misclassified. The

pressure of the handwriting also affects the accuracy of the predictions. If the digits are almost

illegible, the model pools other elements of the image like the background square to make a pre-

diction. Other mistakes, as in the case of the 4 classified as a 9, are due to handwriting styles and

shared features between numbers. As explained in Section 3, these examples spotlight the impor-

tance of the post-classification process to understand the sources of errors, identify problematic

cases, and conduct parameter tuning. Such a process requires humans actively finding out the

sources of error in the model and correcting the most important mistakes. With this example we

want to stress that using CNNs to classify images should not eliminate human intervention, but

should rather limit it to the most crucial or controversial decisions.

To check the general validity of the model predictions, we calculate the parties’ vote total in

Mexico City’s #15 Congressional district.12 Since all the vote counts have three digits, including

leading zeros, we estimate the “uncertainty” around a prediction with a weighted-average of the

12We chose this district because the quality of the scanning was high, allowing us to conduct a more careful analysis
of the sources of errors and misclassification.

22

Figure 8: Examples of digit predictions

label probabilities for each digit in the vote count. This weighted mean assigns more importance

to the errors that happen in the hundreds than in the tens or units. For example, if the model

mislabels a “9” for a “4,” the bias in the vote count would be larger when the vote count is “931”

(underestimating the vote count by 500 votes) than when it is “139” (when the bias would be of

only 5 votes).13 Once we compute the weighted mean of all the vote counts per tally, we label

those with a mean larger than 0.9 as “high quality.”

Figure 9 compares the estimated vote shares for each party (crosses, for all tallies; triangles

for “high quality” tallies) with those reported by the electoral authority (circles).14. As the plot

shows, the CNN recovers proportions similar to the official ones, and this performance improves

when using high quality tallies. Overall, the method is able to correctly identify the ranking and

magnitude of vote counts. This accurate identification illustrates the applicability of CNNs and

their power for data collection tasks.

13The weights for the probabilities for the hundred, ten and unit positions are 0.5, 0.35 and 0.15, respectively. Notice
that these weights are simply giving more importance to some digits than others when computing the uncertainty
of a full vote count. They should not be confused with the “weights” of the features that the CNN uses to optimize
predictions and that we discussed above.

14In the Appendix we also present a comparison between predicted and observed vote counts at the tally level for a
finer level of analysis.

23

Figure 9: Vote proportions by party in District 15: Official vs. Predicted

0.0 0.1 0.2 0.3 0.4

PAN

PRI

PRD

PVEM

PT

MC

PANAL

MORENA

PH

ES

PRD−PT

CNR

VN

Vote percentages by party (Predictions and True values)

Percentage of votes (District 15)

●

With high quality tallies
With all tallies
Official results

5.2 Classifying images from newspapers: Visual framing of a mass shooting

Our second example applies a CNN to classify the different ways in which news outlets frame

political events. Media content impacts people’s attitudes and behavior by setting the tone of

an event or highlighting particular elements of a story (Iyengar, 1994; Valentino, Hutchings and

White, 2002; Brader, 2005; Mutz, 2007; Dunaway, 2008; Abrajano and Singh, 2009; Abrajano, Ha-

jnal and Hassell, 2017). In a world with increasing ideological polarization and the means to

rapidly spread information, the use of CNNs to analyze media framing can help us manage the

overwhelming amount of visual information available nowadays (Won, Steinert-Threlkeld and

Joo, 2017; Torres, 2018; Farris and Silber Mohamed, 2018; Casas and Webb Williams, 2019). Fur-

ther, automated methods like CNNs help us diminishing concerns about cognitive and ideological

biases of coders (Vallone, Ross and Lepper, 1985; Ito et al., 1998; Ali et al., 2010). These biases are

likely to be impactful given the nature of political data and prevalent even in those cases involving

a small number of images.

Our example focuses on the ways in which newspapers frame visual information about mass

24

shootings and gun-related violence. In particular, we analyze the front pages of newspapers pub-

lished on August 4, 2019, the day after a mass shooting in El Paso, Texas, where a gunman opened

fire in a Walmart store. The event was featured in multiple newspapers across the nation, many of

them reproducing the material from wire news sources like the Associated Press. While the content

of the text could be quite similar across newspapers, we found more variance in the type of images

published. As Figure 10 shows, some of the featured images include victims, relatives and em-

ployees. Others, in contrast, focus on law enforcement authorities and, in particular, the heavily

armed special forces that responded to the attack.

Figure 10: Examples of newspaper covers from August 4, 2019

(a) Sun Sentinel (Ft. Lauderdale, FL) (b) Star Tribune (Minneapolis, MN)

The actors on which a news article centers shape the framing that affects individuals’ opin-

ions on the issue. For example, Brader, Valentino and Suhay (2008) find that news about the costs

of immigration trigger stronger opposition when Latino immigrants are featured instead of Eu-

ropean immigrants. In the case of mass shootings, the spotlight on either the victims or heavily

armed police helps to highlight the different angles of a traumatic event, and can also be used to

evoke different emotions (Marcus, Neuman and MacKuen, 2000). On the one hand, pictures of the

25

victims communicate the consequences of gun violence by featuring its emotional consequences

and focusing on sadness or charity. On the other hand, displays of heavily armed police highlight

the criminal aspect of the attack and the actions taken to solve it, in this case through the use of

weapons, and have the potential of triggering fear (Dardis et al., 2008; Boydstun, 2013; Boydstun

and Glazier, 2013). We therefore estimate the proportion of newspapers featuring heavily armed

police in the articles about the mass shooting in El Paso and suggest a few political variables that

could be used for further analysis.

5.2.1 Designing and implementing a CNN: identifying pictures with heavily armed police

The images under analysis come from 450 front pages of local U.S. newspapers published on Au-

gust 4, 2019. The newspaper covers are compiled by Newuseum.15 We find that 64.8% (292) of the

newspapers featured at least one piece related to the shooting. Among these newspapers, 62.7%

(183) included at least one picture illustrating the event. News pieces feature between one and

four images, but most of them include only one. All of the pictures collected from the newspaper

covers form our test dataset.

To classify the content of the images, we use a CNN with transfer learning from Won, Steinert-

Threlkeld and Joo’s (2017) model. These authors compiled the UCLA Image Protest Dataset, a novel

database of 40,764 images from Twitter, from which they identify pictures of protests. The authors

customize a CNN to annotate relevant objects and aspects of protests in the pictures, such as

the level of violence and elements like “signs” or “police.” These labels were generated by their

customized CNN.16

We adapt the authors’ model to our specific classification goal in two ways. First, we refined

some of the original labels: instead of 17 outcomes, we are only interested in identifying whether

a picture features heavily armed or militarized police. Second, as the example in Figure 10 shows,

15The decision to feature an event on the front page also provides information about what a certain publication
considers important. Thus, focusing on front pages allows us to take that dimension into account. Further, under
the assumption that even individuals who do not generally read newspapers are potentially exposed to front pages
in public places like kiosks or stores, we consider that the content on the front page has a potentially larger effect on
attitude formation.

16The architecture of this CNN is based on a 50-layer ResNet (He et al., 2016). This CNN is trained on more than
a million images from the ImageNet database and can classify images into 1,000 categories. Thus, this pre-trained
network has “learned” rich feature representations of a large number of images. Won, Steinert-Threlkeld and Joo (2017)
made slight modifications to the architecture. More specifically, they changed the output layer of the network to their
outcomes of interest (17 categories) and re-trained the last few layers with their own data also containing “negative”
examples of protests.

26

some pictures feature Walmart employees wearing dark blue vests. This particular outfit shares

features with the uniforms of regular police that can be found in the Won, Steinert-Threlkeld and

Joo (2017) dataset. Since we anticipated misclassification errors from that source (e.g., Walmart

employees classified as policemen), we re-trained Won, Steinert-Threlkeld and Joo’s (2017) model

with a dataset composed of 229 images from Google images and Getty with the tags “post-shooting

victims,” “heavily armed police,” “special teams,” and “Walmart employees.” From these 229

images, we selected 152 to be part of the training data and 77 for the validity data. It is important

to highlight that none of the images in these two datasets includes our target pictures from the

newspaper covers.

From the validity set of 77 images, our model correctly classifies 92% of its elements.17 Once

applied to our testing dataset with images from the newspaper front pages, our model took less

than 30 seconds to classify them.18 After this exercise, we find that 17.3% of the pictures related to

the shooting feature heavily armed police.

Understanding the factors that may influence the prevalence of pictures with militarized police

is outside the scope of this paper. Nevertheless, we present a few bivariate relationships that may

suggest further analyses in the future. Our variables include the newspaper’s ideological slant

(Gentzkow and Shapiro, 2010), the number of gun shows per 100,000 citizens in 2018,19 and the

gun death rate and strength of gun-control laws in the state.20 Our outcome of interest is the

proportion of pictures featuring heavily armed police and our unit of analysis is the state.

Figure 11 presents four scatter plots illustrating the relationship between the four variables

enumerated above and the proportion of pictures published in a state’s newspapers that feature

heavily armed police. The upper left panel illustrates the relationship between gun popularity and

proportion of images with heavily armed police. We add labels to those points with proportions

of images different from zero. The x-axis shows the number of gun shows per 100,000 individuals

that happened in each state in 2018. A simple correlation of these two variables of -0.168 suggests

that, on average, as the number of gun shows increases, the proportion of images with militarized

police decreases. The top right panel explores the relationship between strength of gun control

17The precision is 1.0, recall is .838, and the F-1 score is 0.91
18After manual exploration for evaluation purposes, we found only six misclassified images in the full sample.
19The list was compiled by the website http://www.gunshows-usa.com/2018-gun-knife-show-listings/.
20Giffords Law Center. “Annual Gun Law Scorecard.” https://lawcenter.giffords.org/scorecard/. Accessed:

September 17, 2019.

27

http://www.gunshows-usa.com/2018-gun-knife-show-listings/
https://lawcenter.giffords.org/scorecard/

and images with police. The x-axis has a ranking of the strength of gun laws as defined by the

Giffords Law Center, where 1 is the most restrictive state, and 50 is the least restrictive. Thus, the

correlation of 0.075 and visual inspection suggest a positive relationship between the two factors:

less restrictive states tend to have higher proportions of images showing police with guns. We find

a similar positive relationship between the gun-related death rate and the proportion of images

with militarized police in the bottom left panel (correlation=0.023) of the figure. The last panel

shows a positive relationship between the ideological slant and the proportion of images with

police. In other words, as the mean of the ideological slant of the newspapers in a state becomes

more conservative, the proportion of images showing weapons and militarized police increases.

It is interesting to notice that although some of these relationships seem to be meaningful by

visual inspection, the correlation coefficients we compute are not reliably different from zero. This

result can be attributed to data constraints. Beyond the sample size, the data under analysis has

an excess of zeros both structurally and as a regular count. In other words, a 0 (“No police”) in the

outcome variable is a result of either no display of heavily armed police in a picture (a regular zero

count), or the lack of picture on the main cover of the newspaper (structural zero). However, a

pool of images from not only the front page but the full body of the newspaper decreases the latter,

helps to increase the sample size, and allows the researcher to conduct a more rigorous analysis of

the topic.

We present these basic findings to illustrate the potential application and impact of the classi-

fications conducted by the CNN and the multiple research avenues that easy and accessible visual

classification opens for researchers.

6 Conclusion

Using computer vision techniques for image-retrieval and classification can extend the scope of

the data, theory and implications of several social phenomena. In this paper we presented a com-

prehensive guide for researchers interested in using Convolutional Neural Networks for visual

content coding and classification. We presented the intuition behind CNNs, highlighted their po-

tential, and described their structure and implementation.

CNNs have a wide variety of applications in multiple fields of the social sciences. They can be

28

Figure 11: Factors associated with depictions of heavily armed police

●

● ●●

●

●●

●

●

●● ●●

●

●●●●●●

●

●

● ●● ●

●

●

●●

●

●

●

● ●●

●

● ●

●
● ●

● ●● ● ●

−12 −10 −8 −6 −4 −2 0 2

0.0

0.2

0.4

0.6

0.8

1.0

Number of gun shows per 100K citizens (log)

P
ro

po
rt

io
n

of
 im

ag
es

 w
ith

 h
ea

vi
ly

 a
rm

ed
 p

ol
ic

e

Gun popularity (aggregated by state)

AK

CA
DC

FLIL

ME

MI

NC

NE

NM

NY

PA

TX
UT VA

●

● ● ●

●

●●

●

●● ● ●

●

● ●●●●●

●

●

● ● ●●

●

●

●●

●

●

●

● ●●

●

●●

●
●●

●● ● ● ●

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Ranking of strength of gun laws
P

ro
po

rt
io

n
of

 im
ag

es
 w

ith
 h

ea
vi

ly
 a

rm
ed

 p
ol

ic
e

Gun control (aggregated by state)

AK

CA

FLIL

ME

MI

NC

NE

NM

NY

PA

TX
UTVA

●

● ● ●

●

● ●

●

● ●●●

●

●●●● ●●

●

●

●●●●

●

●

● ●

●

●

●

●● ●

●

●●

●
● ●

● ●●●●

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Number of gun−related deaths per 100K citizens

P
ro

po
rt

io
n

of
 im

ag
es

 w
ith

 h
ea

vi
ly

 a
rm

ed
 p

ol
ic

e

Gun death rate (aggregated by state)

AK

CA

FL IL

ME

MI

NC

NE

NM

NY

PA

TX
UT VA

●

●● ●

●

●●

●

●

● ●● ●

●

● ●●● ●●

●

●

●●● ●

●

●

●●

●

●

●

● ●●

●

● ●

●
●●

●●●● ●

0.45 0.50 0.55

0.0

0.2

0.4

0.6

0.8

1.0

Mean ideological slant

P
ro

po
rt

io
n

of
 im

ag
es

 w
ith

 h
ea

vi
ly

 a
rm

ed
 p

ol
ic

e

Media slant (aggregated by state)

AK

CA
DC

FLIL

ME

MI

NC

NE

NM

NY

PA

TX
UTVA

applied to similar data collection problems like the one outlined in the text: retrieving signatures

or the votes that were whipped for a given policy registered in historic documents, classifying

written notes, or even the extraction and interpretation of symbols. They can also be applied to

the coding of more complex political phenomena: measuring gender composition in pictures of

groups, identifying the sentiment of material from electoral campaigns (Lucas, 2018b), recording

the activities of crowds in a protest (Won, Steinert-Threlkeld and Joo, 2017; Zhang and Pan, 2019),

counting the number of people waiting to vote in polling stations (Stein et al., Forthcoming), as-

29

sessing media bias in the photographic coverage of candidates (Neumann, 2019), detecting the

demographic composition of a neighborhood using its visual features (Wilcox-Archuleta, 2019),

analyzing race interactions using videos (Dietrich and Sands, 2019), and others. The extraction of

information from images and visual content invites a wider variety of questions.

The present article also illustrated a couple of the many benefits of CNNs for data collection

purposes and image classification: data collection and content analysis for the study of visual

framing. With these applications we intend to not only illustrate the benefits and substantive

impact of CNNs for social scientists, but also to present some of the challenges and practical issues

that researchers should consider when dealing with visual data. We concluded by discussing the

strengths and limitations of CNNs.

The study of new data sources both complements and enhances the knowledge that we al-

ready have about the political world. However, these opportunities should be paired with a deep

understanding of the characteristics, mechanisms, and consequences of these models.

30

References

Abrajano, Marisa A, Zoltan Hajnal and Hans JG Hassell. 2017. “Media Framing and Partisan
Identity: The Case of Immigration Coverage and White Macropartisanship.” Journal of Race,
Ethnicity and Politics 2(1):5–34.

Abrajano, Marisa and Simran Singh. 2009. “Examining the link between issue attitudes and news
source: The case of Latinos and immigration reform.” Political Behavior 31(1):1–30.

Ali, Omar, Ilias Flaounas, Tijl De Bie, Nick Mosdell, Justin Lewis and Nello Cristianini. 2010.
Automating News Content Analysis: An Application to Gender Bias and Readability. In JMLR
W&CP: Workshop on Applications of Pattern Analysis. pp. 36–43.

Atkeson, Lonna Rae and Kyle L. Saunders. 2008. Election Administration and Voter Confidence.
In Democracy in the States: Experiments in Election Reform, ed. Bruce E. Cain, Todd Donovan and
Caroline Tolbert. The Brookings Institution pp. 21–34.

Barberá, Pablo. 2015. “Birds of the Same Feather Tweet Together. Bayesian Ideal Point Estimation
Using Twitter Data.” Political Analysis 23(1):76–91.

Bengio, Yoshua. 2012. “Practical recommendations for gradient-based training of deep architec-
tures.” CoRR abs/1206.5533.
URL: https://dblp.org/rec/bib/journals/corr/abs-1206-5533

Bowler, Shaun, Thomas Brunell, Todd Donovan and Paul Gronke. 2015. “Election Administration
and Perceptions of Fair Elections.” Electoral Studies 38(1):1–9.

Boydstun, Amber E. 2013. Making the news: Politics, the media, and agenda setting. Chicago, IL:
University of Chicago Press.

Boydstun, Amber E and Rebecca A Glazier. 2013. “A Two-Tiered Method for Identifying Trends in
Media Framing of Policy Issues: The Case of the War on Terror.” Policy Studies Journal 41(4):706–
735.

Brader, Ted. 2005. “Striking a responsive chord: How political ads motivate and persuade voters
by appealing to emotions.” American Journal of Political Science 49(2):388–405.

Brader, Ted, Nicholas A Valentino and Elizabeth Suhay. 2008. “What triggers public opposition to
immigration? Anxiety, group cues, and immigration threat.” American Journal of Political Science
52(4):959–978.

Buda, Mateusz, Atsuto Maki and Maciej A Mazurowski. 2018. “A systematic study of the class
imbalance problemin convolutional neural networks.” Neural Networks (106):249–259.

Buduma, Nikhil. 2017. Fundamentals of Deep Learning. O’Reilly Media.

Buduma, Nikhil and Nicholas Locascio. 2017. Fundamentals of deep learning: Designing next-
generation machine intelligence algorithms. " O’Reilly Media, Inc.".

Cantú, Francisco. 2018. “The Fingerprints of Fraud: Evidence from Mexico’s 1988 Presidential
Election.” Working Paper.

Casas, Andreu and Nora Webb Williams. 2019. “Images that matter: Online protests and the
mobilizing role of pictures.” Political Research Quarterly 72(2):360–375.

31

Challú, Cristian, Enrique Seira and Alberto Simpser. 2018. “The Quality of Vote Tallies: Causes
and Consequences.” Working Paper.

Chan, Philip K and Salvatore J Stolf. 1998. Toward scalable learning with non-uniform classand
cost distributions: A case study in credit card fraud detection. In KDD 1998.

Chatfield, Ken, Karen Simonyan, Andrea Vedaldi and Andrew Zisserman. 2014. “Return of the
Devil in the Details: Delving Deep into Convolutional Nets.” eprint arXiv:1405.3531 .

Coüasnon, Bertrand, Jean Camillerapp and Ivan Leplumey. 2007. “Access by content to handwrit-
ten archive documents: generic document recognition method and platform for annotations.”
International Journal of Document Analysis and Recognition (IJDAR) 9(2-4):223–242.

Dardis, Frank E, Frank R Baumgartner, Amber E Boydstun, Suzanna De Boef and Fuyuan Shen.
2008. “Media framing of capital punishment and its impact on individuals’ cognitive re-
sponses.” Mass Communication & Society 11(2):115–140.

Dietrich, Bryce J., Ryan D. Enos and Maya Sen. 2019. “Emotional Arousal Predicts Voting on the
U.S. Supreme Court.” Political Analysis pp. 1–7.

Dietrich, Bryce, Matthew Hayes and Diana O’Brian. 2019. “Pitch perfect: Vocal pitch and the
emotional intensity of congressional speech on women.” Working Paper.

Dietrich, Bryce and Melissa Sands. 2019. “Seeing Racial Avoidance on City Streets.” Working
paper.

Druckman, James N. and Michael Parkin. 2005. “The Impact of Media Bias: How Editorial Slant
Affects Voters.” The Journal of Politics 67(4):1030–1049.

Dunaway, Johanna. 2008. “Markets, ownership, and the quality of campaign news coverage.” The
Journal of Politics 70(4):1193–1202.

Elkan, Charles. 2012. “Evaluating Classifiers.” Working Paper.

Farris, Emily M and Heather Silber Mohamed. 2018. “Picturing immigration: how the media
criminalizes immigrants.” Politics, Groups, and Identities 6(4):814–824.

Gentzkow, Matthew and Jesse M. Shapiro. 2010. “What Drives Media Slant? Evidence From U.S.
Daily Newspapers.” Econometrica 78(1):35–71.

Goodfellow, Ian, Yoshua Bengio and Aaron Courville. 2016. Deep Learning. Cambridge, MA: MIT
Press.

Grimmer, Justin and Brandon Stewart. 2013. “Text ad Data: The Promise and Pitfalls of Automatic
Content Analysis Methods for Political Texts.” Political Analysis 21(3):267–297.

Hastie, Trevor, Robert Tibshirani and Jerome Friedman. 2009. The elements of statistical learning.
New York: Springer.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren and Jian Sun. 2016. Deep residual learning for im-
age recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778.

Homola, Jonathan. 2018. “The Political Consequences of Group-Based Identities.” Working Paper.

32

Huang, Sheng-Jun, Rong Jin and Zhi-Hua Zhou. 2014. “Active Learning by Querying Informative
and Representative Examples.” IEEE Transactions on Pattern Analysis and Machine Intelligence
36(10):1936–1949.

Huff, Connor D. 2018. “Why Rebels Reject Peace.” Working Paper.

Ioffe, Sergey and Christian Szagedy. 2015. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. Technical report arXiv:1502.03167.

Ito, Tiffany A., Jeff T. Larsen, N. Kyle Smith and John T. Cacioppo. 1998. “Negative information
weighs more heavily on the brain: The negativity bias in evaluative categorizations.” Journal of
Personality and Social Psychology 75(4):887–900.

Iyengar, Shanto. 1994. Is anyone responsible?: How television frames political issues. University of
Chicago Press.

Japkowicz, Nathalie and Shaju Stepehn. 2002. “The Class Imbalance Problem: A Systematic
Study.” Intelligent Data Analysis 6(5):429–449.

Kubat, Miroslav, Robert C. Holte and Stan Matwin. 1998. “Machine learning for the detection ofoil
spills in satellite radar images.” Machine Learning 30(2-3):195–215.

Lawson, Chappell and James A. McCann. 2004. “Television News, Mexico’s 2000 Elections and
Media Effects in Emerging Democracies.” British Journal of Political Science 35:1–30.

LeCun, Yann, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard and Lawrence D Jackel. 1989. “Backpropagation applied to handwritten zip code
recognition.” Neural computation 1(4):541–551.

Lipton, Zachary C. 2016. The Mythos of Model Interpretability. In 2016 ICML Workshop on Human
Interpretability in MachineLearning (WHI 2016). New York: .

Lladós, Josep, Partha Pratim-Roy, José A Rodríguez and Gemma Sánchez. 2007. Word spotting in
archive documents using shape contexts. In Iberian Conference on Pattern Recognition and Image
Analysis. Springer pp. 290–297.

Lucas, Christopher. 2018a. “Neural Networks for the Social Sciences.” Working Paper.

Lucas, Christopher. 2018b. “A Supervised Method for Automated Classification of Political
Video.” Working Paper.

Makin, David A., Dale W. Willits, Wendy Koslicki, Rachael Brooks, Bryce J. Dietrich and Rachel L.
Bailey. Forthcoming. “Contextual Determinants of Observed Negative Emotional States in
Police-Community Interactions.” Criminal Justice and Behavior .

Marcus, George E, W Russell Neuman and Michael MacKuen. 2000. Affective intelligence and polit-
ical judgment. Chicago, IL: University of Chicago Press.

Masters, Dominic and Carlo Luschi. 2018. “Revisiting Small Batch Training for Deep Neural Net-
works.” CoRR abs/1804.07612.
URL: https://dblp.org/rec/bib/journals/corr/abs-1804-07612

McCarty, Nolan, Keith T. Poole and Howard Rosenthal. 2006. Polarized America. The MIT Press.

33

Mutz, Diana C. 2007. “Effects of “in-your-face” television discourse on perceptions of a legitimate
opposition.” American Political Science Review 101(4):621–635.

Nair, Vinod and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted boltzmann
machines. In ICML’10 Proceedings of the 27th International Conference on International Conference
on Machine Learning, ed. Johannes Fürnkranz and Thorsten Joachims. pp. 807–814.

Neumann, Markus. 2019. “Fair and Balanced? News Media Bias in the Photographic Coverage of
the 2016 U.S. Presidential Election.” Working paper.

Nguyen, Anh, Jason Yosinski and Jeff Clune. 2015. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 427–436.

Pan, Sinno Jialin, Qiang Yang, Wei Fan and Sinno Jialin Pan. 2010. “A survey on transfer learning.”
IEEE Transactions on Knowledge and Data Engineering .

Pastor, Robert A. 1999. “The Role of Electoral Administration in Democratic Transitions: Implica-
tions for Policy and Research.” Democratization 6(4):1–27.

Qin, Zhuwei, Fuxun Yu, Chenchen Liu and Xiang Chen. 2018. “How Convolutional Neural Net-
works See the World — A Survey of Convolutional Neural Network Visualization Methods.”
Mathematical Foundations of Computing 1(2):149–180.

Rumelhart, David E., Geoffrey E. Hinton and Ronald J. Williams. 1988. “Learning representations
by back-propagating errors.” Cognitive Modeling 5(3).

Sabour, Sara, Nicholas Frosst and Geoffrey E Hinton. 2017. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems. pp. 3856–3866.

Schrodt, Philip A. 2004. “Patterns, rules and learning: Computational models of international
behavior.” Working Paper.

Settles, Burr. 2009. Active Learning Literature Survey. Computer Sciences Technical Report 1648
University of Wisconsin–Madison.

Simonyan, Karen and Andrew Zisserman. 2014. “Very deep convolutional networks for large-
scale image recognition.” arXiv .

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan Salakhutdinov.
2014. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” Journal of Ma-
chine Learning Research 15:1929–1958.

Stein, Robert M., Christopher Mann, Charles Stewart, III, Zachary Birenbaum, Anson FungJed
Greenberg, Farhan Kawsar, Gayle Alberda, R. Michael Alvarez, Lonna Atkeson, Emily Beaulieu,
Nathaniel A. Birkhead, Frederick J. Boehmke, Joshua Boston, Barry C. Burden, Francisco Cantu,
Rachael Cobb, David Darmofal, Thomas C. Ellington, Terri Susan Fine, Charles J. Finocchiaro,
Michael D. Gilbert, Victor Haynes, Brian Janssen, David Kimball, Charles Kromkowski, Elena
Llaudet, Kenneth R. Mayer, Matthew R. Miles, David Miller, Lindsay Nielson, Yu Ouyang,
Costas Panagopoulos, Andrew Reeves, Min Hee Seo, Haley Simmons, Corwin Smidt, Farrah M.
Stone, Rachel VanSickle-Ward, Jennifer Nicoll Victor, Abby Wood and Julie Wronski. Forthcom-
ing. “Waiting to Vote in the 2016 Presidential Election: Evidence from a Multi-county Study.”
Political Research Quaterly .

34

Taylor, Ula. 2008. “Women in the documents: Thoughts on uncovering the personal, political, and
professional.” Journal of Women’s History 20(1):187–196.

Torres, Michelle. 2018. “Framing a Protest: Determinants and Effects of Visual Frames.” Working
Paper.

Valentino, Nicholas A, Vincent L Hutchings and Ismail K White. 2002. “Cues that matter: How
political ads prime racial attitudes during campaigns.” American Political Science Review 96(1):75–
90.

Vallone, Robert P., Lee Ross and Mark R. Lepper. 1985. “The hostile media phenomenon: Biased
perception and perceptions of media bias in coverage of the Beirut massacre.” Journal of Person-
ality and Social Psychology 49(3):577–585.

Webb Williams, Nora. 2019. “Automated Image Taggers from Amazon, Google, and Microsoft:
Are They Useful for Social Science Research.” Working Paper.

Webb Williams, Nora, Andreu Casas and John D. Wilkerson. Forthcoming. Images as Data for Social
Science Research: An Introduction to Convolutional Neural Nets for Image Classification. Cambridge
University Press.

Wilcox-Archuleta, Bryan. 2019. “Measuring Neighborhood Level Ethnic Visibility: Evidence from
Street View Images.” Working paper.

Won, Donghyeon, Zachary C Steinert-Threlkeld and Jungseock Joo. 2017. Protest activity detection
and perceived violence estimation from social media images. In Proceedings of the 25th ACM
international conference on Multimedia. ACM pp. 786–794.

Wuhs, Steven T. 2014. The Partido Acción Nacional as a Right Party. In The Resilience of the Latin
American Right, ed. Juan Pablo Luna and Cristóbal Rovira Kaltwasser. Baltimore: John Hopkins
University Press pp. 219–241.

Zeiler, Matthew D and Rob Fergus. 2014. Visualizing and understanding convolutional networks.
In European conference on computer vision. Springer pp. 818–833.

Zhang, Han and Jennifer Pan. 2019. “CASM: A Deep-Learning Approach for Identifying Col-
lective Action Events with Text and Image Data from Social Media.” Sociological Methodology
49(1):1–57.

Zhang, Xingzhou, Yifan Wang and Weisong Shi. 2018. pcamp: Performance comparison of ma-
chine learning packages on the edges. In {USENIX}Workshop on Hot Topics in Edge Computing.

35

7 Appendix

Glossary

activation function Function that allows to generate non-linear outputs. In the context of CNNs,
these are mathematical rules or functions that transform the elements of a matrix. 9

activation layer Step of the process where the activation functions are applied to the output ma-
trixes that result from the convolutions. 9

backpropagation Long series of nested equations that have the objective of adjusting each weight
in the network in proportion to how much it contributes to overall error. Backpropagation
can be seen as an application the Chain rule to find the derivatives of a function with respect
to any variable in the nested equation. 12

batch normalization Technique for improving the performance and stability of a neural network
via a normalization step that fixes the means and variances of layer inputs. The normal-
ization process occurs in “mini-batches” (e.g. subsets of the training dataset), to make the
process more efficient. This is possible given that 1) the optimized loss over a mini-batch
is an actual estimate of that in the full set whose quality improves as the size of the batch
increases, and 2) takes advantage of parallel computation. For a layer with d-dimensional

input x = (x(1) . . . x(d)), we normalize each dimension with x̂(k) = x(k)−E(x(k))√
Var(x(k))

, where the

expectation and variance are computed over the training dataset. 17

batch size Number of images in a match, or subset of training images. 12

convolution In mathematics, a convolutional operation transforms two existing functions into an
argument defining how the shape of one functions is modified by the other. The term in
computer science extends to the idea of combining the values of a neuron with those from
the different regions of the image. 7

epochs A training iteration consisting on the single pass of the entire training database through-
out the model. 12

feature map The matrix mapping the outputs from convolution of a given filter and the different
regions of an image. 9

filter size Product of height and width, in pixels, of a matrix representing a filter. 8

filter stride Number of pixels that a filter slides through an image. 8

filters In a CNN, the filters represent the neurons of the network. These are matrixes of numbers
representing patterns and combinations of pixels that permit the extraction of features of
an image. The pixel combinations can represent edges, corners, blobs, color combinations,
and textures. Filters are convolved with regions of the image to create feature maps that
represent the prevalence of the patterns they represent in an image. 7

forward propagation The process in which the input data moves in the forward direction through
the network. Each hidden layer accepts the input data, processes it as per the activation
function and passes to the successive layer. . 12

36

gradient descent Optimization algorithm used to to update the weights, or coefficients, of our
model. Its objective is to minimize some function by iteratively moving in the direction of
steepest descent as defined by the negative of the gradient. The gradient is built with the
partial derivatives of the function with respect to its different parameters. It is represented
by x

′
= x− ε∆xf(x). 12

hyperparameters Hyperparameters are the variables exogenous to the model that determine the
network structure and how it will be trained. The values of the hyperparameters are set
before the training begins and do not depend on the data.. 5

iteration It is the time in which a batch of images passes forward and backward through the
network. . 13

k-fold cross validation This method directly estimates the average generalization error of the
model. It first assigns the images into a given number of subsets. It picks one subset to
check the accuracy of the model after it is trained with the rest of the images, repeating this
process for each subset. Training starts from scratch in every iteration, so what the learned
in one iteration is not transferred to a new one. . 7

layer depth Number of filters used in a layer. 8

learning rate A positive scalar that defines the magnitude of the steps in which the gradient de-
scends. Formally, the learning rate is defined as the parameter ε in the gradient descent
function (see gradient descent). 13

mini-batches Subsets of the images in the training dataset used in the batch-normalization pro-
cess. 13

neurons In the context of a Neural Network, the neuron is a mathematical function, like a sum,
that transforms an input to produce a new output. When talking about Convolutional Neu-
ral Networks, the neuron is the filter, or kernel, that convolves with different areas of the
image. 4

pooling Data reduction technique that applies a rule (e.g. keep the maximum) of a given quad-
rant of the matrix to retain the most important and salient information and improve compu-
tational efficiency and speed. 10

receptive field The area where a given filter, or neuron, is positioned to execute a convolution. 8

ReLU The name stands for REctified Linear Unit. It is the most commonly used activation func-
tion in CNNs formally defined as y = max(0, x). It is computationally cheap due to its math-
ematical simplicity, converges faster due to the linearity for positive values and its sparsely
activated given that it is zero for negative values. 10

Sigmoid Activation function defining a “S”-shaped curve, or sigmoid, formally defined as the
inverse logit: 1

1+e−x . Useful when dealing with binary outcomes/labels. The function is
differentiable and monotonic, and can cause a network to get stuck when training. 10

37

softmax layer A layer with a multinomial function embedded that transforms the output of the
CNN layers up to that into probabilities that the input belongs to each of the potential labels.
This is a fully-connected layer because its neurons are not independent and the output is
based on this dependency (i.e. the probabilities summing to 1). 11

Tahn Also known as hyperbolic tangent, it is an activation function also with a sigmoidal shape
but with a range between -1 and 1. Its formal definition is 22

1+e−x implying that negative
inputs are mapped strongly negative, and zero values would be near to that value when
mapped. 10

transfer learning Exploiting a model trained in a particular setting to improve the generalization
of the findings of a different setting. This is a valuable resource when the researcher consid-
ers that the factors that explain the variations of the original database are useful for the goal
of the new database (Goodfellow, Bengio and Courville, 2016, p. 526-527). 13

weight The unknown parameter of the neural network that seek to improve the fit between the
model and the data.. 11

zero-padding A padding is a “frame” that we add to the border of an image to allow the convo-
lution of the edges and corners of an image, and increase the information that is processed
through the CNN. In this case, the zero-padding adds a vector of zeros with the length of
the width of the image above and below it, and another vector of zeros with the length of
the height of the image to the left and right of it. This is equivalent to adding a black frame
of width 1 px to the image. 6

7.1 Backpropagation

Suppose that a neuron j in the last layer provides a classification outcome yj .21 To estimate the
prediction error, the model compares such an outcome with the target label, tj . In our digit recog-
nition example, the prediction error of the neuron for the outcome “1” is the difference between
the true outcome and the model’s estimated probability for the image to belong to that category.
After adding up the prediction error of all the neurons in the layer, E = 1

2

∑
j∈10(tj − yj)2, we can

estimate the error function derivative of the last layer:

∂E

∂yj
= −(tj − yj) (2)

Similarly, we can express the error derivatives in terms of the logit of the neuron, zj :

∂E

∂zj
=
∂E

∂yj

∂yj
∂zj

= yj(1− yj)
∂E

∂yj
(3)

To minimize this error term, the network goes back to its prior layers and identifies those
weights contributing the most to this error. In other words, it estimates how the neuron outcomes
in layer i affect the outputs of layer j given the weighted connection between both layers, wij :

∂E

∂yi
=

∑
j

∂E

∂zj

∂zj
∂yi

=
∑
j

wij
∂E

∂zj
=

∑
j

wijyj(1− yj)
∂E

∂yj
(4)

21The explanation and notation of this example come from Buduma (2017).

38

These partial derivatives allow us to estimate the contribution of a specific weight to the error
term:

∂E

∂wij
=

∂zj
∂wij

∂E

∂zj
= yj(1− yj)

∂E

∂yi
(5)

The partial derivative in Equation 5 allows the model to gradually modify its weights after
reviewing a set k of examples from the database K:

−∆wij = −
∑
k∈K

y
(k)
i y

(k)
j (1− y(k)j)

∂E(k)

∂y
(k)
i

(6)

39

7.2 Application 1: Coding electoral results from tallies

7.2.1 Network architecture for digit detection

Figure 12: Network Architecture

Input:
13 x 13

Feature
map:
 8 @

15 X 15

Hidden
units:
 128

Outputs:
 10

Fully
connected

Convolution:
3x3

kernel

Activation:
ReLU

Max Pooling:
2x2

kernel

FEATURE EXTRACTION CLASSIFICATION

1

0

2

3

4
5

6

7

8
9

Feature
map:
 16 @
4 X 4

Zero Padding:
Size 1

PRE-PROCESSING

Convolution:
2x2

kernel

Activation:
ReLU

Max Pooling:
2x2

kernel

Notes: Figure 12 illustrates the CNN structure applied to identify digit numbers. The inputs of the images
consist of numerical arrays of 28 (height) × 28 (width) pixel values. The network contains two convoluted

layers of 16 and 32 filters, respectively.

7.2.2 Extracting digits from tallies

We decided to develop a function that identifies the coordinates of three focal points of the tally:
the yellow banner at the top of the page, the bright pink rectangle at the bottom left of the tally,
and the pink circle below the table. The coordinates of these elements, shown inside red rect-
angles in the first element of Figure 7, allow us to identify the bottom, top and left lines of the
table containing the digits. The green dashed lines and yellow area in the second element of the
diagram illustrates this process. Once we isolate the table, we divide it into 3 × the number of
parties/candidates in the district cells. We then cut and save each cell under the assumption that it
contains a digit.22

22This, however is not fulfilled in some cases. Although polling staff is supposed to fill all cells and use leading zeros
for 1 and 2-digit numbers, or parties with no support, several ballots have empty cells.

40

7.2.3 Vote counts per party in District 15: predicted vs. observed

Figure 13 presents the comparison of detected and real vote counts in the tallies of the district.
Because of the right skewed distribution, we applied a logarithmic transformation to both the
predicted and real vote counts.

Each point in the plot represents the comparison between the predicted vote counts of each of
the parties (including null votes, non-registered candidates, and coalitions) and the actual votes.
The size of the point indicates the frequency of each potential combination.

Notice that we also added to the plot information about the quality of the predictions of the
digits. Recall that the last layer of the CNN, the softmax layer, outputs a list with the probabilities
that each input digit has of belonging to each of the 10 possible outcomes (0-9). To classify the
number, we take the category with the highest probability of the list. For most of these numbers,
the maximum probabilities are pretty high (above 0.99). However, in cases where the number is
ambiguous, or the model does not have enough information (e.g. the digits in the tally are not
legible), the predictions that the CNN makes are less likely to be accurate. Therefore, we created
an indicator for each vote count registered in each tally that we then use to evaluate its overall
quality. The triangles in Figure 13 show the vote counts in the tallies identified as “moderate
quality”, whereas the blue circles show the “high quality” ones. If the CNN is yielding accurate
predictions, we should see a high density of observations concentrated along the 45 degree dashed
line indicating that the prediction and the official vote counts are equal. We indeed observe a
dense distribution of a large number of observations along the red line. This is especially true for
the high quality tallies: very few deviate from the line. The “moderate quality” observations show
greater deviations, but these do not follow a pattern that would suggest a systematic bias.

41

Figure 13: Number of votes registered in tallies: Official vs. Predicted

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

2.
75

3.
00

3.
25

3.
50

3.
75

4.
00

4.
25

4.
50

4.
75

5.
00

5.
25

5.
50

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

Official number of votes (log)

D
et

ec
te

d
nu

m
be

r
of

 v
ot

es
 (

lo
g)

District 15 (Mexico City)

Quality of tally based on mean probabilities per digit

High (>0.9) Moderate (<= 0.9)

42

	Introduction
	A Primer on Convolutional Neural Networks (CNNs)
	Image Pre-Processing
	Feature Extraction
	Learning
	Transfer learning

	Recommendations and warnings
	Software
	Finding the training `sweet spot'
	Optimize your training set
	Validate and check the results

	A warning note: The limits of CNNs
	Applications
	Coding Electoral Results from Vote Tallies
	Classifying images from newspapers: Visual framing of a mass shooting
	Designing and implementing a CNN: identifying pictures with heavily armed police

	Conclusion
	Appendix
	Backpropagation
	Application 1: Coding electoral results from tallies
	Network architecture for digit detection
	Extracting digits from tallies
	Vote counts per party in District 15: predicted vs. observed

